Assessment of Moscow population vulnerability to natural and technogenic hazards

https://doi.org/10.35595/2414-9179-2021-4-27-184-201

View or download the article (Rus)

About the Authors

Svetlana V. Badina

Plekhanov Russian University of Economics, Laboratory of Regional Policy and Regional Investment Processes,
Stremyanny lane, 36, 117997, Moscow, Russia;

The Peoples’ Friendship University of Russia (RUDN), Agrarian and Technological Institute,
Miklukho-Maklaya, 6, 117198, Moscow, Russia;

Institute of Economic Forecasting Russian Academy of Sciences, laboratory of analysis and forecasting of economy natural and technological risks,
Nakhimovsky prospect, 47, 117418, Moscow, Russia;

E-mail: bad412@yandex.ru

Roman A. Babkin

Plekhanov Russian University of Economics, Laboratory of Regional Policy and Regional Investment Processes,
Stremyanny lane, 36, 117997, Moscow, Russia;
E-mail: babkin_ra@mail.ru

Abstract

This article introduced an assessment of the Moscow population vulnerability to natural and man-made hazards, taking into account the actual population size and its movement within different time cycles (daily and weekly-seasonal). The use of alternative information sources, allowing to obtain more detailed information about the state of socio-geographical systems, correlates with modern international approaches and corresponds to global trends in the methodological approaches modification to solve a wide range of issues. In this work, in addition to official statistical sources, we used data from mobile operators, which make it possible to characterize the localization of subscribers at a certain point in time with the maximum degree of reliability. This made it possible to significantly correct and clarify the currently existing ideas about the distribution of the population over the Moscow city territory. A series of maps has been created that demonstrate population density as a key vulnerability indicator in the context of Moscow municipalities according to Rosstat data and mobile operators information (at the beginning of 2020). In order to identify the discrepancy between the data on the statistically recorded and real existing population, an existing population assessment in the areas of potential technogenic impact of Moscow potentially dangerous enterprises was carried out. As a result of the study, it was shown that in terms of the natural hazard level, urban space differentiation is less pronounced than in terms of the technogenic hazard level. Technogenic hazards endanger the life and safety of not only the traditionally environmentally unfavorable city parts but also a number of prosperous and prestigious districts. It was found that the number of citizens in the zones of the most dangerous enterprises potential impact varies widely throughout the year—from 0.6 to 1.3 million people (on average it is 1 / 10 from all capital residents). These calculated results are much higher than official documents shows.

Keywords

population vulnerability, natural and man-made risks, Moscow, pulsations of population, mobile phone data.

References

  1. A Study on Urban Mobility and Dynamic Population Estimation by Using Aggregate Mobile Phone Sources. CSIS Discussion Paper, 2014. No. 115. Web resource: www.csis.utokyo.ac.jp/dp/115.pdf (accessed 11.02.2021).
  2. Ahas R., Silm S., Järv O., Saluveer E., Tiru M. Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 2010. V. 1 (17). P. 3–27.
  3. Akimov V.A. Assessment of the state of science in the Russian Federation on the study of technogenic threats. Civil security technologies. 2018. V. 15. No. 1 (55). P. 4–9 (in Russian).
  4. Akimov V.A., Durnev R.A., Sokolov Yu.I. Dangerous hydrometeorological phenomena on the territory of Russia. Moscow: FGU VNII GOChS (FC), 2009. 316 p. (in Russian).
  5. Baburin L.V., Tikunov S.V., Badina S.V., Chereshnia O.Yu. The assessment of socio-economic potential density of arctic territories in Russia. Regional Science Inquiry. 2018. V. 10. No. 2. P. 37–44.
  6. Baburin V.L., Badina S.V. Evaluation of the social-economic potential of natural hazard-subjected territories. Vestnik Moskovskogo Universiteta, Seriya 5: Geografiya, 2015. No. 5. P. 9–16 (in Russian).
  7. Baburin V.L., Badina S.V. Forecasting of damages from natural hazards for the “Northern Caucasus Resorts” tourist cluster. Sustainable Development of Mountain Territories, 2020. V. 12. No. 3 (45). P. 349–356 (in Russian).
  8. Baburin V.L., Badina S.V., Derkacheva A.A., Sokratov S.A., Khismatullin T.I., Shnyparkov A.L. Economic assessment of debris flow risk (Case study of the Siberian federal district). Vestnik Moskovskogo Universiteta, Seriya 5: Geografiya, 2019. No. 4. P. 3–14 (in Russian).
  9. Badina S. Socio-economic potential of municipalities in the context of natural risk (case study—Southern Siberian regions). IOP Conference Series: Earth and Environmental Science, 2018. V. 190. P. 1–7.
  10. Badina S.V. Assessment of probable economic and social damage from hazardous natural processes in the North-West and Central Caucasus. InterCarto. InterGIS, 2019. V. 25. P. 219–228 (in Russian).
  11. Badina S.V. Prediction of socioeconomic risks in the cryolithic zone of the Russian Arctic in the context of upcoming climate changes. Studies on Russian Economic Development, 2020. V. 31. No. 4. P. 396–403.
  12. Bengtsson L., Lu X., Holme P. Predictability of population displacement after the 2010 Haiti earthquake. Proceedings of the National Academy of Sciences, 2012. V. 29 (109). P. 11576–11581.
  13. Bird D.K. The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation—a review of current knowledge and practice. Natural Hazards and Earth System Sciences, 2009. V. 9. No. 4. P. 1307–1325.
  14. Bogorov V.G., Novikov A.V., Serova E.I. Self-knowledge of the city. Archeology of the periphery (materials of the Moscow Urban Forum). M.: Meganom, Strelka Institute, 2013. P. 380–405 (in Russian).
  15. Botzen W.J.W., Bouwer L.M., Scussolini P., Kuik O., Haasnoot M., Lawrence J., Aerts J.C.J.H. Integrated disaster risk management and adaptation. Loss and damage from climate change. Springer, Cham, 2019. P. 287–315.
  16. Bründl M., Romang H.E., Bischof N., Rheinberger C.M. The risk concept and its application in natural hazard risk management in Switzerland. Natural Hazards and Earth System Sciences, 2009. V. 9. No. 3. P. 801–813.
  17. Calabrese F., Diao M., Lorenzo D., Ferreira J. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 2013. V. 26. P. 301–313.
  18. Cavallo E., Noy I. The Economics of Natural Disasters. A Survey. Washington: Inter-American Development Bank, 2010. P. 50.
  19. Choi C. Does economic growth really reduce disaster damages? Index decomposition analysis for the relationship between disaster damages, urbanization and economic growth and its implications. International Journal of Urban Sciences, 2016. V. 20. No. 2. P. 188–205.
  20. Cruz A.M., Okada N. Consideration of natural hazards in the design and risk management of industrial facilities. Natural hazards, 2008. V. 44. No. 2. P. 213–227.
  21. Efremov K.V., Lisanov M.V., Sof’in A.S. Calculation of zones of destruction of buildings and structures during explosions of fuel-air mixtures at hazardous production facilities. Labor safety in industry, 2011. V. 20. No. 11. P. 70–77 (in Russian).
  22. ESSnet Big Data. 2020. European Commission. Web resource: www.ec.europa.eu/eurostat/cros/content/essnet-big-data_en (accessed 28.02.2021).
  23. Garschagen M., Romero-Lankao P. Exploring the relationships between urbanization trends and climate change vulnerability. Climatic Change, 2015. V. 133. No. 1. P. 37–52.
  24. Grazhdankin A.I. Modern hazards of major industrial accidents. VNII GOCHS: yesterday, today, tomorrow. Book 3—Scientific articles. Ed. V.A. Akimov. M.: VNIIGOCHS, 2011. P. 293–298 (in Russian).
  25. Hanewinkel M., Hummel S., Albrecht A. Assessing natural hazards in forestry for risk management: a review. European Journal of Forest Research, 2011. V. 130. No. 3. P. 329–351.
  26. Haynes K., Barclay J., Pidgeon N. Whose reality counts? Factors affecting the perception of volcanic risk, J. Volcanol. Geoth. Res., 2008. 172. P. 259–272.
  27. Insurance against emergencies. Under total. ed. S.I. Voronova. Moscow: FGBU VNII GOChS (FC), 2016. 292 p. (in Russian).
  28. IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer O., R. Pichs-Madruga, Y. Sokona et al.]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1420 p.
  29. Kunreuther H. Mitigation and financial risk management for natural hazards. The Geneva Papers on Risk and Insurance-Issues and Practice, 2001. V. 26. No. 2. P. 277–296.
  30. Lujala P., Lein H., Rød J.K. Climate change, natural hazards, and risk perception: The role of proximity and personal experience. Local Environment, 2015. V. 20. No. 4. P. 489–509.
  31. Makarova E.A., Porfiriev B.N. Economic assessment of damage from natural disasters and catastrophes. Bulletin of the Russian Academy of Sciences, 2014. V. 84. No. 12. P. 1059–1072 (in Russian).
  32. Makhrova A.G., Babkin R.A., Kazakov E.E. Dynamics of the daytime and nighttime population as an indicator of structural and functional changes in the territory of the city in the zone of influence of the Moscow Central Ring using data from mobile operators. The contours of global transformations: politics, economics, law, 2020. V. 13. No. 1. P. 159–179 (in Russian).
  33. Makhrova A.G., Kirillov P.L. Seasonal pulsation of settlement in the Moscow agglomeration under the influence of dacha and labor pendulum migration: approaches to the study and assessment. Regional Studies, 2015. No. 1 (47). P. 117–125 (in Russian).
  34. Makhrova A.G., Nefedova T.G., Treivish A.I. Polarization of the space of the Central Russian megalopolis and population mobility. Vestnik Moskovskogo Universiteta, Seriya 5: Geografiya, 2016. No. 5. P. 77–85 (in Russian).
  35. Narita D., Tol R.S.J., Anthoff D. Damage Costs of Climate Change through Intensifi cation of Tropical Cyclone Activities: An Application of FUND. Climate Research, 2009. 39 (2). P. 87–97.
  36. On the state of protection of the population and territories of the Russian Federation from natural and man-made emergencies in 2019: state report. M.: EMERCOM of Russia; FGBU VNII GOChS (FC), 2020. 259 p. (in Russian).
  37. Orttung R.W., Anisimov O., Badina S., Burns C., Cho L., DiNapoli B., Jull M., Shaiman M., Shapovalova K., Silinsky L., Zhang E., Zhiltcova Y. Measuring the sustainability of Russia’s arctic cities. Ambio, 2020. P. 1–15.
  38. Osipov V.I. Urbanization and natural hazards. Tasks to be solved. Geoecology, 2007. No. 1. P. 3–9 (in Russian).
  39. Osipov V.I., Aksyutin O.E., Ishkov A.G., Grachev V.A., Sergeev D.O. Adaptation is the most important technology for the development of the Russian subarctic territories. Bulletin of the Russian Academy of Sciences, 2019. V. 89. No. 1. P. 56–63 (in Russian).
  40. Osipov V.I., Burova V.N., Zaikanov V.G., Minakova T.B. Basics for assessing the vulnerability of territories to hazardous natural processes that determine emergency situations (principles and methodological approaches). Geoecology, 2015. No. 3. P. 195–203 (in Russian).
  41. Osipov V.I., Burova V.N., Zaikanov V.G., Molodykh I.I., Pyrchenko V.A., Savisko I.S. Map of large-scale (detailed) engineering-geological zoning of the territory of Moscow. Geoecology, 2011. No. 4. P. 306–318 (in Russian).
  42. Osipov V.I., Larionov V.N., Burova N.I., Frolova N.I., Sushchev S.P. Methodology of natural risk assessment in Russia. Nat Hazards, 2017. No. 88. P. 17–41.
  43. Popov A.A., Kuricheva E.K. Development of housing construction in the 2010s as a factor in the transformation of the Moscow agglomeration. Regional Studies, 2015. No. 1  47). P. 104–116 (in Russian).
  44. Porfiriev B.N. Economic consequences of the catastrophic flood in the Far East in 2013. Bulletin of the Russian Academy of Sciences, 2015. V. 85. No. 22. P. 128–137 (in Russian).
  45. Porfiriev B.N. Nature and economics: risks of interaction. (Ecological and economic essays). Edited by Academician V.V. Ivanter. Moscow: Ankil, 2011. 352 p. (in Russian).
  46. Roncancio D.J., Nardocci A.C. Social vulnerability to natural hazards in São Paulo, Brazil. Natural Hazards, 2016. V. 84. No. 2. P. 1367–1383.
  47. Shaposhnikov A.S. Analysis of the effectiveness of monitoring and forecasting systems for natural and man-made emergencies using the example of Moscow. Civil Security Technologies, 2009. V. 6. No. 3–4. P. 210–215 (in Russian).
  48. Shemyakin A.S., Yakovlev S.Yu. Calculation of the affected area for chemically hazardous objects. Proceedings of the Kola Scientific Center of the Russian Academy of Sciences, 2016. No. 6–7 (40). P. 120–131 (in Russian).
  49. Streletskiy D., Shiklomanov N., Suter L. Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geography, 2019. No. 42. P. 267–286.
  50. Tizzoni M., Bajardi P., Decuyper A., Kon Kam King G., Schneider C.M., Blondel  ., Smoreda Z., González M.C., Colizza V. On the use of human mobility proxies for modeling epidemics. PLoS Comput Biol., 2014. V. 7 (10). P. 1–35.
  51. Tokareva E.A. Organization of financing of the consequences of natural disasters in foreign countries. Ed. L.I. Tsvetkova. Moscow: Ankil, 2015. 76 p. (in Russian).
  52. UNDRR (2019): Global Assessment Report on Disaster Risk Reduction, Geneva, Switzerland, United Nations Office for Disaster Risk Reduction (UNDRR). 425 p.
  53. Zhou H., Wang J., Wan J., Jia H. Resilience to natural hazards: a geographic perspective. Natural hazards, 2010. V. 53. No. 1. P. 21–41.

For citation: Badina S.V., Babkin R.A. Assessment of Moscow population vulnerability to natural and technogenic hazards InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 4. P. 184–201. DOI: 10.35595/2414-9179-2021-4-27-184-201 (In Russian)