Spatio-temporal modeling of geographic networks

DOI: 10.35595/2414-9179-2025-1-31-408-419

View or download the article (Rus)

About the Authors

Andrey M. Karpachevskiy

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: karpach-am@yandex.ru

Chingiz B. Zhanarbaev

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: chingiz.zhanarbaev@student.msu.ru

Maria A. Lipovetskaya

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: lipoveckayama@my.msu.ru

Abstract

The article discusses the features of spatial and temporal modeling of geographic networks, in which the structure and functioning depend both on the spatial arrangement of elements and on the temporal dynamics of their activity. The need to distinguish between two key processes is emphasized: dynamics—changes in the network state with a fixed or slightly changing topology, and evolution—long-term changes in the network structure, including modification of its topology and spatial configuration. The theoretical foundations of the analysis of geographic networks, which differ from traditional abstract graphs by taking into account the physical location of nodes and connections, are described. It is shown that the spatiotemporal properties of the network significantly affect the processes of flow propagation, reliability of functioning and vulnerability of systems. The paper formalizes dynamic space-time networks in which nodes and edges are active at certain points in time, and their characteristics are related to real physical conditions. Using the example of public transport networks, the features of temporal variability of connectivity, accessibility and speed of movement are analyzed. For public transport in Chelyabinsk, the dynamics of the average journey time during the day is shown. The evolutionary processes of the spatial structure are studied using the example of the main electric networks of Russia for the period 1933–2020, using network metrics of stability, uniformity and vulnerability. The analysis of key stages in the development of regional energy systems has been carried out and patterns of changes in their structural stability have been identified. The results obtained emphasize the importance of the spatiotemporal approach for assessing the state, modeling functioning, planning development and effective management of geographical networks in the context of changing spatial and temporal factors.

Keywords

network dynamics, transportation networks, network evolution, electrical grid

References

  1. Baddeley A., Rubak E., Turner R. Spatial Point Patterns: Methodology and Applications with R. 1st ed. New York: Chapman and Hall/CRC, 2015. DOI: 10.1201/b19708.
  2. Barrat A., Barthélemy M., Vespignani A. Dynamical Processes on Complex Networks. Cambridge: Cambridge University Press, 2008. DOI: 10.1017/CBO9780511791383.
  3. Barthelemy M. Morphogenesis of Spatial Networks. Switzerland, Cham: Springer International Publishing, 2018. 331 p. DOI: 10.1007/978-3-319-20565-6.
  4. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.-U. Complex Networks: Structure and Dynamics. Physics Reports, 2006. V. 424. Iss. 4–5. P. 175–308. DOI: 10.1016/j.physrep.2005.10.009.
  5. Buzna L. The Evolution of the Topology of High-Voltage Electricity. International Journal of Critical Infrastructures, 2009. V. 5. No. 1/2. P. 72–85. DOI: 10.1504/IJCIS.2009.022850.
  6. Haryan C.A., Ramakrishna G., Nasre R., Reddy A.D. A GPU Algorithm for Earliest Arrival Time Problem in Public Transport Networks. 2020 IEEE XXVII International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE, 2020. P. 171–180. DOI: 10.1109/HiPC50609.2020.00031.
  7. Holme P., Saramäki J. Temporal Networks. Physics Reports, 2012. V. 519. No. 3. P. 97–125. DOI: 10.48550/arXiv.1108.1780.
  8. Karpachevskiy A.M. Theoretical and Technological Problems of Geographic Networks Analysis. Geodesy, Cartography, Geoinformatics and Cadasters. Proceedings of the V All-Russian Scientific and Practical Conference. St. Petersburg: Publishing and Printing Association of Higher Educational Institutions, 2024. P. 487–494 (in Russian). DOI: 10.52565/9785911553449.
  9. Lipovetskaya M.A., Karpachevskiy A.M. Geo-Information Modeling of Spatial Structure Changes of Russia’s Backbone Electric Networks in 1933–2020. Digital Geography. Proceedings of the II All-Russian Scientific and Practical Conference with International Participation (Perm, September 25–28, 2024). Perm: Perm National Research Polytechnic University, 2024. P. 127–130 (in Russian).
  10. Liu C., Xu Q., Chen Z., Bak C. Vulnerability Evaluation of Power System Integrated with Large-Scale Distributed Generation Based on Complex Network Theory. XLVII International Universities Power Engineering Conference (UPEC). IEEE, 2012. P. 1–5. DOI: 10.1109/UPEC.2012.6398605.
  11. Newman M.E.J. Networks: An Introduction. Oxford: Oxford University Press, 2010. DOI: 10.1093/acprof:oso/9780199206650.001.0001.
  12. Pan R.K., Saramäki J. Path Lengths, Correlations, and Centrality in Temporal Networks. Physical Review E, 2011. V. 84. Art. 016105. DOI: 10.1103/PhysRevE.84.016105.
  13. Rosas-Casals M., Valverde S., Sole R. A Simple Spatiotemporal Evolution Model of a Transmission Power Grid. IEEE Systems Journal, 2018. V. 12. P. 3747–3754.
  14. Tarkhov S.A. Evolutionary Morphology of Transport Networks. Smolensk–Moscow: Universum, 2005. 382 p. (in Russian).
  15. Zhanarbaev Ch.B., Karpachevskiy A.M. Modeling of Spatio-Temporal Dynamics of Urban Public Transport Networks on the Example of Chelyabinsk. Geodesy, Cartography, Geoinformatics and Cadasters. Proceedings of the V All-Russian Scientific and Practical Conference. St. Petersburg: Publishing and Printing Association of Higher Educational Institutions, 2024. P. 423–430 (in Russian). DOI: 10.52565/9785911553449.

For citation: Karpachevskiy A.M., Zhanarbaev Ch.B., Lipovetskaya M.A. Spatio-temporal modeling of geographic networks. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 408–419. DOI: 10.35595/2414-9179-2025-1-31-408-419 (in Russian)