Toward correctness control of postal addresses geocoding

https://doi.org/10.35595/2414-9179-2021-2-27-114-127

View or download the article (Rus)

About the Authors

Lev Obuhov

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
St. Petersburg, Russia;
E-mail: obuhov.lev@mail.rust068972@student.spbu.ru

Evgeny Panidi

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
St. Petersburg, Russia;
E-mail: panidi@ya.rue.panidi@spbu.ru

Abstract

The paper discusses content and results of the methodology elaborated for geocoding of postal addresses. The geocoding issue is considered on the example of study devoted to the exploration of the spatial distribution and dynamics tuberculosis and concomitant diseases infection cases. The study is carried out on a large city scale. The example of St. Petersburg city (Russia) is used.

Proposed methodology is based upon the extending of the classical geocoding scheme that assumes direct linking of the address data presented as a part of initial dataset with the address data presented in the reference dataset (in the geospatial database). The extension consists in the use of a middle reference-standard register of postal addresses. An address database developed by official agencies is used as a reference-standard register. Initial data records are linked with the records of the reference-standard register by postal addresses, and the register records, in turn, are linked with the records of the reference dataset used for geocoding (with the addresses recorded in the attributes of the geospatial database objects).

This approach allows to provide control of structure and content correctness for the address data used for geocoding, as well as to convert address data in to a unified form accepted officially at the state level and used in official documents and information systems.

The methodology is implemented on the example of the postal address system used in the Russia. However, it can also be used when operating with the address system of any other states. In such a case, it is necessary to have an official register of postal addresses to implement the methodology. The register have to be presented in a structured form (preferably in the form of a database). The methodology can be used both for medical statistics data geocoding, and for geocoding of other domain data.

Keywords

QGIS, FIAS, Nominatim, KLADR-API, OSM.

References

  1. Boris F.N., Makht V.A., Boris E.A. The solution of problems of mass appraisal of real estate with application of the method of geocoding. Omsk Scietntific Bulletin, 2014. V. 2 (130). P. 214–216 (in Russian).
  2. Harris D.R., Delcher C. Bench4gis: benchmarking privacy-aware geocoding with open big data. proceedings—2019 IEEE International Conference on Big Data, 2019. Article 9006234. P. 4067–4070. DOI: 10.1109/BigData47090.2019.9006234.
  3. Farafonov A.I. Development of automatic geocoding in transportation company. Vestnik IzGTU imeni M.T. Kalasnikova, 2015. V. 18. Issue 1. P. 103–105 (in Russian).
  4. Kuznetsov I., Panidi E., Kolesnikov A., Kikin P., Korovka V., Galkin V. GIS-based infectious disease data management on a city scale, case study of St. Petersburg, Russia. International Archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, 2020. V. XlIII-B3-2020. P. 1463–1467. DOI: 10.5194/isprs-archives-XLIII-B3-2020-1463-2020.
  5. Kuznetsov I., Panidi E., Korovka V., Galkin V. City-scale gIS-based monitoring of infectious disease—contemporary issues, case study of St. Petersburg, Russia. Proceedings of the 6th Internatonal Scientific Conference GEOBALCANICA, 2020. P. 791–796. DOI: 10.18509/GBP.2020.87.
  6. Kuznetsov I., Panidi E., Korovka V., Galkin V., Voronov D. Web-based representation and management of infectious disease data on a city scale, case study of St. Petersburg, Russia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020. V. XlIV-3/W1-2020. P. 87–91. DOI: 10.5194/isprs-archives-XLIV-3-W1-2020-87-2020
  7. Makarov O.S. Overview of online services for addresses formalizing. XLVII Ogarev Readings, Proceedings of the Scientific Conference, 2019. P. 352–357 (in Russian).
  8. Mannanov A.A., Agishev T.H. Geocoding of areas using Yandex Maps and the OpenStreetMap Nominatim data search engine. Theory and Practice of Modernization of the Scientific Activity in the Conditions of Digitalization, Proceedings of the International Scientific and Practical Conference, 2020. P. 20–23 (in Russian).
  9. Pietro G.D., Rinnone F. Online geocoding services: a benchmarking analysis to some European cities. Proceedings of the 2017 Baltic Geodetic Congress (BGC Geomatics), 2017. Article 8071486. P. 273–281. DOI: 10.1109/BGC.Geomatics.2017.12.
  10. Rashidian S., Dong X., Avadhani A., Poddar P., Wang F. Effective scalable and integrative geocoding for massive address datasets. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2017. Article 26. P. 1–10. DOI: 10.1145/3139958.3139986.
  11. Rashidian S., Jain S.K., Dong X., Wang F. Easergeocoder: integrative geocoding with machine learning. proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2018. P. 572–575. DOI: 10.1145/3274895.3274929.
  12. Rizwan M., Dass S.C., Asirvadam V.S., Gill B.S., Sulaiman L.H. DenMap: a Dengue surveillance system for Malaysia. Journal of Physics: Conference Series, 2018. V. 1123. Issue 1. Article 012045. DOI: 10.1088/1742-6596/1123/1/012045.
  13. Silveira I.H.D., Oliveira B.F.A., Junger W.L. Use of Google Maps for geocoding data from the Mortality Information System in Rio de Janeiro municipality, Brazil, 2010-2012. Epidemiologia e servicos de saude: revista do Sistema Unico de Saude do Brasil, 2017. V. 26. Issue 4. P. 881–886. DOI: 10.5123/S1679-49742017000400018.
  14. Stepanova L.A., Zaitseva E.N. Geocoding sites in Quantum GIS with the help of Yandex databases. Software & Systems, 2015. V. 3. P. 199–203 (in Russian). DOI: 10.15827/0236-235X.111.199-203.
  15. Wheeler A.P., Gerell M., Yoo Y. Testing the spatial accuracy of address-based geocoding for gunshot locations. Professional Geographer, 2020. V. 72. Issue 3. P. 398–410. DOI: 10.1080/00330124.2020.1730195.

For citation: Obuhov L., Panidi E. Toward correctness control of postal addresses geocoding InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 114–127. DOI: 10.35595/2414-9179-2021-2-27-114-127 (In Russian)