Application of laser scanning technology to control the state of protective constructions when transferring oil products

View or download the article (Rus)

About the Authors

Maxim A. Altyntsev

Siberian State University of Geosystems and Technologies, Department of Engineering Geodesy and Mine Surveying,
Plakhotnogo str., 10, 630108, Novosibirsk, Russia;

Marina A. Altyntseva

Siberian State University of Geosystems and Technologies, Department of Cartography and Geoinformatics,
Plakhotnogo str., 10, 630108, Novosibirsk, Russia;


Laser scanning technology is actively used in various industries. Laser scanning has provenbe a highly precision method of collecting spatial data to solve various tasks. In the oil and gas industry, these are the tasks associated with the study of pipelines for degradation in order to prevent fuel leakage, study of tank state and assessment of their deformations due to various adverse factors, including soil subsidence, timely detection of mechanical damage to oil and gas infrastructure, assessment of the protective structure health, allowing to identify the degree of their reliability in case of emergencies. In order to use the laser scanning technology to identify most of the issues in a timely manner, as well as to assess their possible consequences, various studies are being carried out to develop data collection techniques, to increase the automation degree of the processing the surveying results and their accuracy, to develop methods of creating the final product, demonstrating the result of the processing in the desired form. These modern research trends in the laser scanning technology in order to control the state of protective constructions when transferring oil products are considered.

Depending on a laser scanner position when surveying, 3 its types are distinguished: terrestrial, airborne and mobile. Recommendations of applying laser scanning types are discussed. The advantages of applying each type of laser scanning when monitoring various types of protective constructions are indicated. As an example, terrestrial and mobile laser scanning data are given for one site—the oil and gas condensate deposit area. Accuracy of laser scanning data and the reasons for possible errors in their pre-processing are analyzed. It is shown that additional surveying allows detecting changes in the state of various territory objects.


Earth remote sensing, laser scanning, protective constructions, oil products, adjustment, deformation monitoring.


  1. Altyntsev M.A., Karpik P.A. The technique for creating digital three-dimensional models of oil and gas manufacturing facility object infrastructure using terrestrial laser scanning. Vestnik SSUGT. 2020. V. 25. No. 2. P. 121–139. DOI: 10.33764/2411-1759-2020-25-2-121-139. (in Russian).
  2. Amon P., Rieger P., Riegl U., Pfennigbauer M. Introducing a New Class of Survey-Grade Laser Scanning by use Unmanned Aerial Systems (UAS). Proceedings of the FIG Congress 2014. Engaging the Challenges—Enhancing the Relevance. 2014. No. 7074.
  3. Besl P.J., McKay N.D. Method for Registration of 3-D Shapes. IEEE Transactions on pattern analysis and machine intelligence. 1992. V. 14. No. 2. P. 239–256. DOI: 10.1109/34.121791.
  4. Chibunichev A.G., Veligev A.B. Automatic comparison of cloud points derived from terrestrial laser scanning using orientation histograms. Izvestiya vuzov. Geodesy and Aerophotography. 2008. No. 3. P. 112–119. (in Russian).
  5. Dedkova V.V., Komissarov A.V. Analysis of methods and means of control of main pipelines’ protective structures. Vestnik SSUGT. 2020. V. 25. No. 2. P. 77–84. DOI: 10.33764/2411-1759-2020-25-4-77-84. (in Russian).
  6. Dong Z., Liang F., Yang B., Xu Y., Zang Y., Li J., Wang Y., Dai W., Fan H., Hyyppäb J., Stilla U. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS Journal of Photogrammetry and Remote Sensing. 2020. V. 163. P. 327–342. DOI: 10.1016/j.isprsjprs.2020.03.013.
  7. Fuad N. Comparing the performance of point cloud registration methods for landslide monitoring using mobile laser scanning data. International Archives of ISPRS. 2018. V. XLII-4/W9. P. 11–21. DOI: 10.5194/isprs-archives-XLII-4-W9-11-2018.
  8. Gao Y., Huang X., Zhang F., Fu Z., Yang C. Automatic geo-referencing mobile laser scanning data to UAV images. International Archives of ISPRS. 2015. V. XL-1/W4. P. 41–46. DOI: 10.5194/isprsarchives-XL-1-W4-41-2015.
  9. Gruen A., Akca D. Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing. 2005. V. 59 (3). P. 151–174. DOI: 10.1016/j.isprsjprs.2005.02.006.
  10. Guo Y. Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vision. 2013. V. 105 (1). P. 63–86. DOI: 10.1007/s11263-013-0627-y.
  11. Hu H., Sons M., Stiller C. Accurate Global Trajectory Alignment using Poles and Road Markings. IEEE Intelligent Vehicles Symposium. IV. 2019. DOI: 10.1109/IVS.2019.8814054.
  12. Hussnain Z., Oude Elbernk S., Vosselman G. An automatic procedure for mobile laser scanning platform 6dof trajectory adjustment. International Archives of ISPRS. 2018. V. XLII-1. P. 203–209. DOI: 10.5194/isprs-archives-XLII-1-203-2018.
  13. Jdeed A.J. Review of point clouds segmentation and classification methods for architectural objects. Izvestiya vuzov. Geodesy and Aerophotography. 2019. V. 63. No. 1. P. 52–59. DOI: 10.30533/0536-101X-2019-63-1-52-59. (in Russian).
  14. Kitada Y., Dan H., Yasumuro Y. Optimization scenario for 3D-scanning plans of outdoor constructions based on SFM. Proceedings of CONVR. 2015. P. 65–68. DOI: 10.2208/jscejcei.71.I_169.
  15. Kotel’nikov S.I. Application of technology of laser scanning for monitoring of oil tanks. Mine Surveying Bulletin. 2016. Vol. 111. No. 2. P. 36–40. (in Russian).
  16. Kukko A. Mobile laser scanning—system development, performance and applications. Juvenes Print, thesis. 2013. 249 p.
  17. Maalek R., Lichti D.D., Ruwanpura J.Y. Automatic recognition of common structural elements from point clouds for automated progress monitoring and dimensional quality control in reinforced concrete construction. Remote Sensing. 2019. V. 11 (9). No. 1102. DOI: 10.3390/rs11091102.
  18. Mavridis P., Andreadis A., Papaioannou G. Efficient Sparse ICP. Computer Aided Geometric Design. 2015. V. 35. P. 16–26. DOI: 10.1016/j.cagd.2015.03.022.
  19. Medvedev E.M., Danilin I.M., Melnikov S.R. LiDAR of ground and forest. Moscow: Geolidar, Geospace. Krasnoyarsk: Sukachev Institute of Forest SB RAS. 2007. 230 p. (in Russian).
  20. Schaer P., Vallet J. Trajectory adjustment of mobile laser scan data in GPS denied environments. International Archives of ISPRS, 2016. V. XL-3/W4. P. 61–64. DOI: 10.5194/isprs-archives-XL-3-W4-61-2016.
  21. Scherzinger B., Hutton J. Applanix In-Fusion technology explained. Web resource: (дата обращения: 20.04.2021).
  22. Scott W.R., Roth G., Rivest J.F. View planning for automated three-dimensional object reconstruction and inspection. ACM Computing Surveys (CSUR), 2003. V. 35 (1). P. 64. DOI: 10.1145/641865.641868.
  23. Seredovich V.A., Komissarov A.V., Komissarov D.V., Shirokova T.A. Terrestrial laser scanning. Novosibirsk, SSGA. 261 p. (in Russian).
  24. Soudarissanane S., Lindenbergh R. Optimizing terrestrial laser scanning measurement set-up. International Archives of ISPRS. 2011. V. XXXVIII-5/W12. P. 127–132.
  25. Soudarissanane S., Lindenbergh R., Menenti M., Teunissen P. Incidence angle influence on the quality of terrestrial laser scanning points. International Archives of ISPRS. 2009. V. XXXVIII. No. 3/W8. P. 183–188.
  26. Sun H., Xu Z., Yao L., Zhong R., Du L., Wu H. Tunnel monitoring and measuring system using mobile laser scanning: Design and deployment. Remote Sensing. 2020. V. 12 (4). DOI: 10.3390/rs12040730.
  27. Theory and practice on Terrestrial Laser Scanning. Training material based on practical applications. Vlaams Leonardo Da Vinci agentschap, 2008. 241 p.
  28. Torresan C., Berton A., Carotenuto F., Chiavetta U., Miglietta F., Zaldei A., Gioli B. Development and Performance Assessment of a Low-Cost UAV Laser Scanner System (LasUAV). Remote Sensing. 2018. V. 10. No. 1094. DOI: 10.3390/rs10071094.
  29. Vasiliev G.G., Salnikov A.P., Katanov A.A., Likhovtsev M.V., Ilyin E.G. Optimization of the process of post-processing of the results of surface laser scanning in the evaluation of the stress-strain state of vertical steel tank. Science & Technologies: Oil and Gas Products Pipeline Transportation. 2019. V. 9. No. 1. P. 32–39. DOI: 10.28999/2541-9595-2019-8-1-32-39. (in Russian).
  30. Vosselman G., Maas H-G. Airborne and Terrestrial Laser Scanning. CRC Press, 2010. 318 p.
  31. Wakisaka E., Kanai S., Date H. Optimal Laser Scan Planning for As-Built Modeling of Plant Renovations Using Mathematical Programming. Proceedings of 36th International Symposium on Automation and Robotics in Construction. 2019. DOI: 10.22260/ISARC2019/0013.
  32. Wang Y., Chen Q., Zhu L., Liu L., Li C., Zheng D. A Survey of Mobile Laser Scanning Applications and Key Techniques over Urban Areas. Remote Sensing. 2019. V. 11 (13). No. 1540. DOI: 10.3390/rs11131540.
  33. Yang Z. Using training samples retrieved from a topographic map and unsupervised segmentation for the classification of airborne laser scanning data. Remote Sensing. 2020. V. 12 (5). No. 877. DOI:

For citation: Altyntsev M.A., Altyntseva M.A. Application of laser scanning technology to control the state of protective constructions when transferring oil products InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 1. P. 377–393. DOI: 10.35595/2414-9179-2021-1-27-377-393 (In Russian)