The use of a software and hardware complex created on the basis of unmanned aerial vehiclesand GIS technologies for monitoring the erosion processes of the water protection zone of the Belgorod reservoir

https://doi.org/10.35595/2414-9179-2021-1-27-339-350

View or download the article (Rus)

About the Authors

Aleksei E. Kosolapov

Russian Information-Analytic and Research Water Economy Center (FSBI RusIAR WMC),
Filimonovskaya Street, 174, 344000, Rostov-on-Don, Russia;
E-mail: akosol@mail.ru

Grigoriy I. Skripka

Russian Information-Analytic and Research Water Economy Center (FSBI RusIAR WMC),
Filimonovskaya Street, 174, 344000, Rostov-on-Don, Russia;
E-mail: skripka.grisha@yandex.ru

Olga V. Ivlieva

Southern Federal University,
B. Sadovaya Street, 105, 344006, Rostov-on-Don, Russia;

Russian Information-Analytic and Research Water Economy Center (FSBI RusIAR WMC),
Filimonovskaya Street, 174, 344000, Rostov-on-Don, Russia;

E-mail: ivlieva.o@mail.ru

Ludmila A. Bespalova

Southern Federal University,
B. Sadovaya Street, 105, 344006, Rostov-on-Don, Russia;

Russian Information-Analytic and Research Water Economy Center (FSBI RusIAR WMC),
Filimonovskaya Street, 174, 344000, Rostov-on-Don, Russia;

E-mail: bespalowaliudmila@yandex.ru

Abstract

Determining value of erosion network density in the water protection zone is the compulsory index in the automated information system of water bodies state monitoring.

The authors of the article developed and tested when studying the Tsimlyansk reservoir water protection zone recommendations for determining erosion network density by materials of distant inspections carried out using pilot-less aircraft (PLA) and tools of geographic information systems (GIS).

In the article assessment of erosion network density for the Belgorodsk reservoir water protection zone carried out using given recommendations is presented. Such inspections are especially actual for the banks where regular observation benchmark network is lacking or they have low transport accessibility.

Based on series of photographs made by pilotless aircrafts using Agisoft Photo Scan programme relief numerical models and orthophotomaps of the water protection zone are constructed. By direct and indirect signs position of tolwegs for the relief linear erosion forms of different orders—from furrows and grooves to brooks and small rivers. According to the recommendations developed by the authors, the water protection zone is divided into elementary segments and for every of them the value of erosion network density determined using GIS tools.

Assessment of erosion network density showed that on the background of general low degree of the relief horizontal dismemberment for the Belgorodsk reservoir water protection zone the reservoir right-bank within Shebekinsky municipal region was distinguished noticeably. The erosion network density of this plot by 5–7 times exceeds the value of this parameter for the whole water protection zone of the reservoir. And only here relief erosion forms fully located within the water protection zone predominate noticeably, that is not characteristic for the rest part e the reservoir cost.

Keywords

reservoir, density of the erosion network, orthomosaic, unmanned aerial vehicle, digital terrain model.

References

  1. Galygin V.A., Kramchaninov N.N., Petin A.N. Dynamics of processing of the banks of the Belgorod and Starooskolsky reservoirs. Belgorod State University Scientific Bulletin Series: Natural Sciences, 2012. No. 3 (122). P. 234–237. (in Russian).
  2. Ilhas V.V., Silkin K.Y. Topography and its role in the processing of the shores of the reservoir. Materials of the youth innovation project “School of Environmental Perspectives”. Voronezh: IPF “Voronezh”, 2012. P. 82–90. (in Russian).
  3. Kosolapov A.E., Skripka G.I., Ivlieva O.V., Bespalova L.A., Kalimanov T.A. Monitoring of dangerous exogenous geological processes in the water protection zone of Tsimlyansk Reservoir. International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” (ISEES 2018). Advances in Engineering Research. AtlantisPress, 2018. P. 32–37. DOI: 10.2991.isees-18.2018.7.
  4. Kramchaninov N.N. Processing of the shores of the Belgorod reservoir as a factor of impact on its environment. Belgorod State University Scientific Bulletin Series: Natural Sciences, 2009. No. 11. P. 119–125. (in Russian).
  5. Pavlova A.I. Morhometrical analys of relief with the help of GIS, INTEREKSPO GEO-SIBIR. Novosibirsk: Sibirsky state university of geosystems and technologies, 2013. V. 3. No. 4. P. 166–169.
  6. Pavlova A.I. Applying methods of relief numerical medelling for erosion lands mapping. In the world of scientific oliscoveries. Krasnoyarsk: OOO “Scientific and innovative centre”, 2016. No. 2 (74). P. 159–169.
  7. Petrova M.Y. Distribution of exogenous geodynamic processes and phenomena within the water protection zone of the Voronezh reservoir. Materials of the youth innovation project “School of Ecological Perspectives”. Ed. by I.I. Kosinova. Voronezh: IPF “Voronezh”, 2012. P. 97–102. (in Russian).
  8. Semyocnhik A.G. Geomorphometrical analysis in GIS. Proceeding of 74-th scientific conference of students and postgraduates of Belgorodsk state university, May 15–24, 2017. Minsk: Belorusian state university, 2017. V. 1. P. 326–329.
  9. Skripka G.I., Ivlieva O.V., Bespalova L.A., Saprygin V.V. Assessment of relationship between value of erosion network density in reservoir water protection zones and natural features. Modern problems of geo-ecology of the North Caucasus. V. X (in 2 parts), Part. 2. M.: IIET RAN, 2020. V. 10. Part. 2. P. 523–529.

For citation: Kosolapov A.E., Skripka G.I., Ivlieva O.V., Bespalova L.A. The use of a software and hardware complex created on the basis of unmanned aerial vehiclesand GIS technologies for monitoring the erosion processes of the water protection zone of the Belgorod reservoir InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 1. P. 339–350. DOI: 10.35595/2414-9179-2021-1-27-339-350 (In Russian)