Use of high-resolution images in local area management tasks

View or download the article (Rus)

About the Authors

Marina G. Erunova

The Federal State Budget Scientific Institution, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the RAS”,
Akademgorodok str., 50, 660036, Krasnoyarsk, Russia;

Anna A. Gosteva

The Federal State Budget Scientific Institution, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the RAS”,
Akademgorodok str., 50, 660036, Krasnoyarsk, Russia;


For an enormous amount of time, people are trying to rationally use the territory where they live, work, and relax. There are a large number of methods to do this better and automate the process of effective territory management. One of the critical tasks of managing the territory is the operational monitoring of its current state. The best solution for this task is to use remote sensing data. According to MODIS data, currently, methods for active global monitoring of territories have been developed, and their archive began in 2000. However, this data has the insufficient spatial resolution to solve problems for local areas, such as an agricultural field, an urban neighborhood whose dimensions are comparable to the solution of 1-pixel MODIS. For such territories, it is necessary to use data with a higher spatial resolution.

The article describes the use of high-resolution satellite data from PlanetScope in the tasks of managing a local territory for four territories. 2 types of objects are considered: agricultural land is represented by experimental agricultural enterprise “Minino”, “Kuraginskoe” and “Mikhailovskoe”, urban land is represented by one object, the city of Krasnoyarsk. The statistical values of the NDVI, VARI, and CIGreen indices were obtained for each field in each farm during the entire growing season. The relationship between the annual course of vegetation indices and crops is analyzed. For the territory of the city of Krasnoyarsk, temperature maps were calculated according to Landsat 8 data with classification according to PlanetScope by the type of underlying surface, which allowed us to identify changes in the urban landscape by temperature anomalies.


PlanetScope, satellite data, vegetation indices, land surface temperature, local territories.


  1. Bartalev S.A., Egorov V.A., Zharko V.O., Loupian E.A., Plotnikov D.E., Khvostikov S.A. Current state and development prospects of satellite mapping methods of Russia’s vegetation cover. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2015. V. 12. No. 5. P. 203–221. (in Russian).
  2. Bartalev S.A., Loupian E.A., Neishtadt I.A., Savin I.Yu. Classification of some types of agricultural crops in the southern regions of Russia according to MODIS satellite data. Issledovaniye Zemli iz kosmosa. 2006. No. 3. P. 68–75. (in Russian).
  3. Erunova M., Yakubailik O. GIS technologies for agricultural monitoring in the regional agriculture system of the Krasnoyarsk territory. 19 Int. Multidiscip. Sci. GeoConf. 2019. (SGEM2019 Conf. Proc., Issue 2.2) P. 863–870. DOI: 10.5593/sgem2019/2.2/S11.106.
  4. Erunova M., Yakubailik O. Monitoring of agricultural vegetation development based on time series analysis of satellite data, Proc. SPIE 11560, 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, 1156054 (12 November 2020). DOI: 10.1117/12.2575663. (in Russian).
  5. Goryushin O.A. Instrumental means and models of socio-economic monitoring of the region (experience of implementation). Economic problems of countries and regions: RAS. Center. ekon.-mat. in-t. Moscow, 1994. P. 121–139. DOI: 10.35595/2414-9179-2019-2-25-101-111. (in Russian).
  6. Gosteva A.A., Matuzko A.K., Yakubailik O.E. Search for changes in the temperature of the urban environment based on satellite data on the example of the city of Krasnoyarsk. Processing of spatial data in the tasks of monitoring natural and anthropogenic processes (SDM-2019). Proceedings of the All-Russian conference with international participation (August 26–30, 2019, Berdsk). Novosibirsk: IVT SB RAS, 2019. P. 401–405. DOI: 10.24057/2414-9179-2018-2-24-195-205. (in Russian).
  7. Gosteva A.A., Matuzko A.K., Yakubailik O.E. Remote methods in studying the temperature of the Earth’s surface in cities (on the example of the city of Krasnoyarsk, Russia). Proceedings of the International conference “InterCarto. InterGIS”. 2018. No. 24 (2). P. 195–205. (in Russian).
  8. Grishchenko Mikhail Yu., Kalitka Lev S. Studying the seasonal variability of thermal field of Krasnodar using Landsat 8 satellite imagery. InterCarto, InterGIS. 2019. V. 25 (2). P. 101–111. (in Russian).
  9. Komarov A.A. Assessment of the state of the grass stand with the help of the vegetation index NDVI. Izvestiya SPbGAU. 2018. No. 2 (51). (in Russian).
  10. Loupian E.A., Bartalev S.A., Tolpin V.A., Zharko V.O., Krasheninnikova Yu.S., Oksyukevich O.Yu. VEGA satellite service applications in regional remote monitoring systems. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2014. V. 11, No. 3. P. 215–232. (in Russian).
  11. Loupian E.A., Bartalev S.A., Krasheninnikova Yu.S., Plotnikov D.E., Tolpin V.A., Uvarov I.A. Analysis of winter crops development in the southern regions of the European part of Russia in spring of 2018 with use of remote monitoring. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. V. 15. No. 2. P. 272–276. DOI: 10.21046/2070-7401-2018-15-2-272-276. (in Russian).
  12. Ozdogan M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sensing of Environment, 2010. No. 114 (6). P. 1190–1204. DOI: 10.1016/j.rse.2010.01.006.
  13. Panasyuk M.V. Region as a territorial formation: a new approach to the study. High-tech technologies. 2004. V. 5. No. 4. P. 6–12. (in Russian).
  14. Redowan M., Akter S., Islam N. Analysis of forest cover change at Khadimnagar National Park, Sylhet, Bangladesh, using Landsat TM and GIS data. Journal of Forestry Research. 2014. No. 25 (2). P. 393–400. DOI: 10.1007/s11676-014-0467-9.
  15. Shevyrnogov A.P., Chernetskiy M.Yu., Vysotskaya G.S. Interannual Trend of NDVI and Temperature in the South of Krasnoyrsky. Issledovaniye Zemli iz kosmosa. 2012. No. 6. P. 77–87. (in Russian).
  16. Terekhov A.G., Kauazov A.M. Subsatellite MODIS-oriented analysis of the informativeness of vegetation indices in the problem of describing the state of spring wheat in Northern Kazakhstan. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2007. Iss. 4. V. 2. P. 52–357. (in Russian).
  17. Voronina P.V., Mamash E.A. Classification of thematic monitoring for agriculture problems using remote sensing MODIS data. Computational technologies. 2014. V. 19. No. 3. P. 76–102. (in Russian).
  18. Yakubaylik O.E. Geoinformatsionny internet-portal. Computational technologies. 2007. V. 12. No. S3. P. 116–126. (in Russian).

For citation: Erunova M.G., Gosteva A.A. Use of high-resolution images in local area management tasks InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 1. P. 263–276. DOI: 10.35595/2414-9179-2021-1-27-263-276 (In Russian)