Web-GIS “Ecological Atlas of the Sea of Azov”

DOI: 10.35595/2414-9179-2020-1-26-561-571

View or download the article (Rus)

About the Author

Olga E. Arkhipova

Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences,
Chekhov Аvе, 41, Rostov-on-Don, Russia;
E-mail: arkhipova@ssc-ras.ru

Abstract

The methodology for developing a web version of the Electronic Ecological Atlas of the Sea of Azov is based on the use of “cloud” technology of the geoportal — an open platform that is completely built on world industry standards and supports various types of data and services.

In 2019, the static part of the Ecological Atlas of the Sea of Azov (Atlas) was completed and posted on the organization’s website, based on the use of standard website creation methods. The objective of the study is to expand the standard means of presenting Atlas data by introducing interactive web applications into it. Web applications are developed on the ArcGis Online platform using Esri standards. As part of the development of the dynamic part of the Atlas, two interactive web applications were created: “Ecological study of the seas of the south of Russia” and “Water Protection Zone of the Sea of Azov”. The application “Ecological study of the seas of the south of Russia” includes thematic maps built on the basis of interactive queries, including maps of the distribution of observation stations by year, by executors and type of observation, as well as infographics and data tables. The web application allows you to create maps that clearly show the results of field research and measurements in the Azov Sea region, as well as allow visual analysis of data from different years, add your own tabular relationships. The purpose of the application developed “Water protection zone of the Azov Sea” is the empowerment of the Atlas through the introduction of interactive web applications tightly themed. One of the objectives is to assess the impact of economic activity on the coastal zone of the Sea of Azov within the water protection zone.

Keywords

ecological atlas, web GIS, cloud technology, Sea of Azov

References

  1. Arkhipova O.E., Lychagina Yu.M. Atlas information system for assessing the sustainable development of the coastal zone of the Sea of Azov. InterCarto. InterGIS. GI support of sustainable development of territories: Proceeding of the International conference. Petrozavodsk: KRC RAS, 2018. V. 24. Part 1. P. 68–74. DOI: 10.24057/2414-9179-2018-1-24-68-74 (in Russian, abs English).
  2. Arkhipova O.E., Lychagina Yu.M. Development of the concept of a web publication of the Ecological Atlas of the Sea of Azov. Ecology. Economy. Informatics. Series: System analysis and modeling of economic and ecological systems, 2017. V. 1. No 2. P. 135–142 (in Russian).
  3. Boyd D.S. Remote sensing in physical geography: a twenty-first century perspective. Progress in Physical Geography, 2009. No 33. P. 451–456.
  4. Brunt J.W., Servilla M.S., Gil I.S., Costa D.B. Defining and assessing data quality in online ecological information systems. COS 19-8. ESA/SER Joint Meeting. Ecological Society of America Annual Meeting Abstracts. San Jose McEnery Convention Center, San Jose, California, 2007. Web resource: https://eco.confex.com/eco/2007/techprogram/P7168.HTM (accessed 12.11.2019).
  5. Chen G.L., Sun G.Z., Xu Y., Long B. Integrated research of parallel computing: status and future. Chinese Science Bulletin, 2009. No 54. P. 1845–1853.
  6. Curran P.J., Dash J., Lankester T., Hubbard S. Global composites of the MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 2007. No 28. P. 3757–3758.
  7. Flemons P., Guralnick R., Krieger J., Ranipeta A., Neufeld D. A web-based GIS tool for exploring the world’s biodiversity: The Global Biodiversity Information Facility mapping and analysis portal application (GBIF-MAPA). Ecological Informatics, 2007. No 2. P. 49–60.
  8. Gewin V. Mapping opportunities. Nature, 2004. No 427. P. 376–377.
  9. Graham J., Newman G., Jarnevich C., Shory R., Stohlgren T.J. A global organism detection and monitoring system for non-native species. Ecological Informatics, 2007. No 2. P. 177–183.
  10. Honda K., Shrestha A., Witayangkurn A., Chinnachodteeranun R., Hiroshi S. Field servers and sensor service grid as real-time monitoring infrastructure for ubiquitous sensor networks. Sensors, 2009. No 9. P. 2363–2370.
  11. Keller M., Schimel D.S., Hargrove W.W. A continental strategy for the National Ecological Observatory Network. Frontiers in Ecology and the Environment, 2008. No 6. P. 282–284.
  12. Kosyan R.D., Krylenko M.V. Modern state and dynamics of the Sea of Azov coasts. Estuarine, Coastal and Shelf Science, 2019. No 224. P. 314–323. DOI: 10.1016/j.ecss.2019.05.008.
  13. Krabach T. Breakthrough sensor technology for space exploration in the 21st century. Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Xplore), Goa, India, 2000. V. 6. Aerospace Conference Proceedings. P. 565–569. DOI: 10.1109/AERO. 2000.877930.
  14. Matishov G.G., Arkhipova O.E., Bulysheva N.I., Gargopa Yu.M., Golubeva N.I., Inzhebeikin Yu.I., Kovaleva G.V., Kondakov A.A., Krasnorutskaya K.V., Lebedeva N.V., Luzhnyak V.A., Nabozhenko M.V., Panasyuk N.V., Savitsky R.M., Sayapin V.V., Sorokina V.V., Stepanyan O.V., Titov V.V., Tolochko I.V., Shokhin I.V. Ecological atlas of the Sea of Azov. Rostov-on-Don: Publishing House of SSC RAS, 2011. 328 p. (in Russian).
  15. Matishov G.G., Matishov D.G., Gargopa Yu.M., Dashkevich L.V., Berdnikov S.V., Kulygin V.V., Arkhipova O.E. Methodology, and experience in developing climate atlases. Proceedings of the Southern Scientific Center of the Russian Academy of Sciences. V. IV. Rostov-on-Don: Publishing House of SSC RAS, 2009. P. 21–48 (in Russian).
  16. Osborne P.E., Alonso J.C., Bryant R.G. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. The Journal of Applied Ecology, 2001. V. 38. Iss. 2. P. 458–471. DOI: https://doi.org/10.1046/j.1365-2664.2001.00604.x.
  17. Osborne P.E., Foody G.M., Suarez-Seoane S. Non-stationarity and local approaches to modelling the distributions of wildlife. Diversity and Distributions, 2007. No 3. P. 313–323.
  18. Rundell P.W., Graham E.A., Allen M.F., Fisher J.C., Harmon T.C. Environmental sensor networks in ecological research. New Phytologis, 2009. No 182. P. 589–607.
  19. Shamoun-Baranes J., Bouten W., Buurma L., DeFusco R., Dekker A., Sierdsema H., Sluiter F., Van Belle J., Van Gasteren H., Van Loon E. Avian information systems: developing web-based bird avoidance models. Ecology and Society, 2008. V. 13. No 2. Art 38. Web resource: http:// www.ecologyandsociety.org/vol13/iss2/art38/ (accessed 05.12.2019).
  20. Zhang T., Tsou M.-H. Developing a grid-enabled spatial Web portal for Internet GIS Services and geospatial cyberinfrastructure. International Journal of Geographical Information Science, 2009. No 23. P. 605–630.

For citation: Arkhipova O.E. Web-GIS “Ecological Atlas of the Sea of Azov”. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 1. P. 561–571. DOI: 10.35595/2414-9179-2020-1-26-561-571 (in Russian)