Classification of cartographic models according to their content, dimensionality, material of production and types of reality

View or download the article (Eng)

About the Authors

Dobrin Petkov

University of Architecture, Civil Engineering and Geodesy,
Chr. Smirnenski blvd, 1, 1046, Sofia, Bulgaria;

Temenoujka Bandrova

University of Architecture, Civil Engineering and Geodesy,
Chr. Smirnenski blvd, 1, 1046, Sofia, Bulgaria;


Cartography as one of the most ancient science and practice supply users with cartographic models and deliver them with geospatial information. Now in the days of technological revolution and digital earth we cannot find clearly classification of cartographic models including the latest achievements of science, technics and methodology. Several classifications, mainly of maps are shown and critical review is done. It is visible that no standardization in this field.

Cartography as a mathematical science need classification system of its models, data and information. It is needed to everybody who make and use cartographic models. The classification system offers a possible method for selecting a suitable model that can be used to visualize a data set or theory. The point of classification is to take large number of observations and group them into data ranges or classes.

This paper represents an information about cartographic models and make attempt to classify them according to their content (general, thematic, specialized), dimensionality (2D, 2.5D, 3D, 4D, multidimensional), material of production (paper / hard base, digital, anaglyph, holographic, web), and types of reality (virtual, augmented, physical). This is done on the base of new cartographic models appeared with technical innovation and computer-aided systems used in cartography nowadays.


cartographic models, classification, dimension, virtual reality, augmented reality.


  1. Andrew P.G., Lansgaard M.L. Maps and related cartographic materials: cataloging, classification and bibliographic control. Routledge, 2000. 502 p. Web resource: (accessed 20.02.2020).
  2. Azuma R. A Survey of augmented reality. Massachusetts Institute of Technology. Teleoperators and Virtual Environments, 1997. V. 6. Iss. 4. P. 355–385.
  3. Bandrova T. Symbol system for three-dimensional (3D) city maps. Dissertation Thesis. University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria, 2001.
  4. Berlyant A.M. Cartography. Moscow: Aspect Press, 2003. 477 p. (in Russian).
  5. Caron C., Roche S., Larfouilloux J., Hadaya P. A new classification framework for urban geospatial web sites. CyberGeo, 2005. DOI: 10.4000/cybergeo.3115. Web resource: (accessed 21.02.2020).
  6. Christophe S. Cartographic Styles between traditional and original (towards a cartographic style model). AutoCarto Conference, Columbus, Ohio, USA, 2012. Proceedings. Web resource: (accessed 20.02.2020).
  7. Dalkiran H.P., Park S.Ch., Lee S. Hologram: The future of the cartographic publishing. 2020. 16 p. Web resource: (accessed 12.02. 2020).
  8. Farooq S., Thematic mapping. Aligarh Muslim University, Department of Geology (India), 2002.
  9. Geospatial World Forum. Seminar: Principles of 5D modelling, 2012.
  10. Hájek P., Jedlička K., Čada V. Principles of cartographic design for 3D maps — focused on urban areas. Proceedings of 6th International conference on cartography and GIS. Albena, Bulgaria, 2016. P. 297–307.
  11. Idrizi B. General cartography with map generalization. Skopje, 2004. 207 p. (in Macedonian).
  12. Ikonovich V. Models in cartography. Proceedings of the Faculty of Geography, University of Belgrade, 2006. Iss. LIV. P. 229–248.
  13. Ikonovich V. Cartographic modeling — investment and importance. Geographical Institute “Jovan Cvijic”, 2007. No 57. P. 443–449.
  14. Kone ny M., Rais K. Geographic Information Systems. J.K. University Purkyne in Brno, Faculty of Natural Scientarium Purkynianae. Brno, 1985. V. XXVI. 66 p. (in Czech).
  15. Liang J., Gong J., Liu J., Zou Y., Zhang J., Sun J., Chen S. Generating orthorectified multi-perspective 2.5D maps to facilitate Web GIS-based visualization and exploitation of massive 3D city models. ISPRS International Journal of Geo-Information, 2016. V. 5. Iss. 11. P. 212. DOI: 10.3390/ijgi5110212.
  16. MacEachren A. GVIS facilitating visual thinking. How Maps Work: Representation, Visualization, and Design. New York: The Guilford Press, 1995. P. 355–458.
  17. Markoski B. Representation of land on map. Basic Principles of Topography. Cham: Springer Geography, 2018. P. 25–29.
  18. Penev P. Specialized mapping in Bulgaria. Proceedings of 6th International conference on cartography and GIS, Albena, Bulgaria. 2016.
  19. Peng Z.R., Tsou M.H. Internet GIS. Hoboken, NJ, USA: John Wiley & Sons, 2003.
  20. Pérez E.; Merchán P., Merchán M.J., Salamanca S. Virtual reality to foster social integration by allowing wheelchair users to tour complex archaeological sites realistically. Remote Sensing, 2020. V. 12. Iss. 3. P. 419. DOI: 10.3390/rs12030419.
  21. Quaye-Ballard J.A. Virtual reality: A tool for cartographic visualization, department of geomatic engineering, faulty of civil and geomatic engineering. Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Journal of Science and Technology, 2008. V. 28. No 1.
  22. Ramonas A. Cartographic modelling in the geographic information systems: Somequestions of theory, methods of analysis. Geodezija i Kartografija, 1998. No 24:2. P. 75–86. Web resource: (accessed 17.02.2020).
  23. Resch B., Hillen F., Reimer A., Spitzer W. Towards 4D Cartography — Four-dimensional dynamic maps for understanding spatio-temporal correlations in lightning events. International Cartographic Conference (Dresden), 2013. The Cartographic Journal, 2013. V. 50. No 3. P. 266–275. DOI: 10.1179/1743277413Y.0000000062.
  24. Savova-Georgieva D. Cartographic modeling of natural disasters for primary and secondary education. University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria, 2018. Web resource: (accessed 2.02.2020).
  25. Schobesberger D., Patterson T. Evaluating the efectiveness of 2D vs. 3D trailhead maps. Proceedings of the 6th ICA Mountain Cartography Workshop, Lenk, Switzerland, 2008. Mountain Mapping and Visualization. P. 201–205.
  26. Srbinovski Z. General cartography. Skopje: St. Cyril and Metodii University, 2012. 299 p. (in Macedonian).
  27. Trodd N. Cartographic modelling. 2005. Web resource: (accessed 19.02.2020).
  28. Turner K. What’s the difference among 2d, 2.5d, 3d and 4d? Applied Geoscience forum, GIS World Article, 1997.
  29. Valjarevic A.D., Potić I. Web cartography — Interactive-Internet cartography. Conference: 4. Srpski kongres geografa, Kopaonik, Serbia, 2015. Р. 23.
  30. Vasilev S. University of Architecture, Civil Engineering and Geodesy, E-mail seminar of Cartography 1999–2000. Changes in cartography, Sofia, 2000.
  31. Yano K., Nakaya T., Isoda Y., Kawasumi T. Virtual Kyoto as 4D GIS. Virtual Geographic Environment. Science Press. Beijing, China, 2009. Р. 69–86.
  32. Yonov N. School atlas with augmented reality. Proceedings of the International Cartographic Association, 2, 2019, 29th International Cartographic Conference (ICC 2019), 15–20 July 2019, Tokyo, Japan. 6 p. DOI: 10.5194/ica-proc-2-150-2019.
  33. Zeng R., Zeng H. Printing anaglyph maps optimized for display. Proceedings of SPIE — The International Society for Optical Engineering, 2011. V. 1. 5 p. DOI: 10.1117/12.872644.
  34. Zlatanova S., Yan J., Wang Y., Diakité A., Isikdag U., Sithole G., Barton J. Spaces in spatial science and urban applications — state of the art review. ISPRS International Journal of Geo-Information, 2020. V. 9. Iss. 1. P. 58. DOI:

For citation: Petkov D., Bandrova T. Classification of cartographic models according to their content, dimensionality, material of production and types of reality InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 1. P. 434–446. DOI: 10.35595/2414-9179-2020-1-26-434-446