Development of software and technology platform for satellite data processing complex

http://doi.org/10.35595/2414-9179-2019-1-25-388-397

View or download the article (Rus)

About the Author

Alexey A. Kadochnikov

Institute of Computational Modelling SB RAS,
Akademgorodok 50/44, 660036, Krasnoyarsk, Russia,
E-mail: scorant@icm.krasn.ru

Abstract

The United Regional Remote Sensing Center was created to solve the problem of ensuring the effective use of the results of space activities in the Krasnoyarsk Territory. Based on the United Center a new satellite receiving complex of FRC KSC SB RAS was put into operation. It is currently receiving satellite data from TERRA, AQUA, Suomi NPP, NOAA-20 and FENG-YUN satellites. Within the framework of the work carried out in cooperation with the Siberian Regional Center for Remote Sensing of the Earth, work has been done to create an archive of satellite data from domestic Resource-P and Meteor-M2 satellites.

The work considers some features of the development of software and technological support tools for loading, processing and publishing of remote sensing data. Described batch processing mechanisms high volume of daily incoming data. Features of preparing data before publishing them in a web application and methods for reducing the size of the intermediate data archive for the operation of this web application, the structure of the web application and the technologies and standards used. Development is created in the service-oriented paradigm based on geoportal technologies and interactive web-cartography. The focus in this article is paid to the peculiarities of implementing the software components of the web GIS, the efficient processing and presentation of geospatial data.

Keywords

web mapping, geographic information system, geoportal, geospatial data, remote sensing data.

References

  1. Cheng M.C., Chou S.C., Chen Y.C., Chen B. et al. Automated Formosat image processing system for rapid response to international disasters. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016. V. XLI-B4. P. 755–762.
  2. Fu P., Jiulin Sun J. Web GIS: Principles and applications. Moscow: Data+ Publishing, 2013. 356 p. (in Russian).
  3. Innerebner M., Costa A., Chuprikova E., Monsorno R., Ventura B. Organizing earth observation data inside a spatial data infrastructure. Earth Sci Inform., 2017. No 10. V. 1. P. 55–68.
  4. Kadochnikov A.A. Features construction geospatial web applications and services for the environmental monitoring systems. Journal of Siberian Federal University. Series: Technics & Technologies, 2015. No 8 (7). P. 908–916 (in Russian).
  5. Li Gf., Li Gj., Han G. Enhancement of low contrast images based on effective space combined with pixel learning. Information, 2017. No 8 (4). P. 135. DOI: 10.3390/info8040135.
  6. Pchel’nikov D.V., Dobtretsov N.N. The construction of time series simultaneously using SUOMI NPP VIIRS and TERRA/AQUA MODIS remote sensing data. Proceedings of the International conference «InterCarto. InterGIS», 2017. V. 23. Part 3. P. 46–51 (in Russian).
  7. Setiyoko A., Meiyanti R., Nurbojatmiko, Syamsudin A., Sensuse D., Noprisson H. Satellite image catalog system improvement based on process innovation method. AIP Conference Proceedings, 2018. Melville, New York: AIP Publishing, 2018. V. 1977. No 1. P. 020015.
  8. Shukilovich A.Y., Fedotova E.V., Maglinets Y.A. Using Modis data for Agricultural Areas Monitoring. Journal of Siberian Federal University. Series: Technics & Technologies, 2016. No 9 (7). P. 1035–1044 (in Russian).
  9. Strotov V.V., Taganov A.I., Kolesenkov A.N., Kostrov B.V. High-performance technology for indexing of high volumes of Earth remote sensing data. Proceedings of Conf. of SPIE “High-Performance Computing in Geoscience and Remote Sensing VII”, 5 October 2017. Bellingham, WA, USA: International Society for Optics and Photonics, 2017. V. 10430. P. 104300K.
  10. Yakubailik O.E., Kadochnikov A.A. The formation of information and analytical software for United Regional Remote Sensing Center of the Krasnoyarsk region. Distributed information and computing resources. Science for digital economy (DICR-2017). Proceedings of the XVI All-Russian Conference 4–7 December, 2017, Novosibirsk. Novosibirsk: Institute of Computational Technologies of SB RAS, 2017. P. 380–385.

For citation: Kadochnikov A.A. Development of software and technology platform for satellite data processing complex InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 1. P. 388–397. DOI: 10.35595/2414-9179-2019-1-25-388-397