GIS-analysis of housing construction during the period of international sanctions against Russia based on data from DOM.RF (using the example of the St. Petersburg metropolitan area)

DOI: 10.35595/2414-9179-2025-3-31-142-157

View or download the article (Rus)

About the Authors

Ilya A. Logvinov

St. Petersburg State University, Institute of Earth Sciences,
7/9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: ilia.logwinov@yandex.ru

Stanislav S. Lachininskii

St. Petersburg State University, Institute of Earth Sciences,
7/9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: lachininsky@gmail.com

Timur R. Nureev

St. Petersburg State University, Institute of Earth Sciences,
7/9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: t.r.nureev@yandex.ru

Abstract

Housing construction plays a significant role in the development of urban areas. However, the variety of housing formats and the role of developers can be difficult to quantify using traditional government statistics in geographical research. New sources of data, such as government information systems, allow for a deeper understanding of this issue. One such system is the United Information System on Housing Construction (EISZhS in Russian). The purpose of this research is to explore the data from EISZhS for housing construction analysis, taking into account the corporate affiliations of residential complexes. The large urban agglomeration of St. Petersburg became the testing ground for the study. The author’s method of obtaining attribute and spatial data from the EISZhS for each residential object in the study area is described. An approach to processing the received data is also presented. A variant of the allocation of key housing construction zones is proposed. Methods for assessing the intensity of construction and the diversity of developers in designated areas are described. An example of spatial analysis and calculation of industry indicators for some developers is provided. As a result, several advantages of the EISZhS were identified, and the possibility of using this data source for considering housing construction in a corporate, territorial, and sectoral context was justified. Previously, this was not available in the research of its predecessors when using government statistics and other data sources. However, a number of limitations of the data from the EISZhS also emerged. Considering the specifics of the data in the EISZhS and based on the described approaches, it is planned to conduct in-depth studies of housing construction in the future. These studies will take into account the characteristics of developers and their ability to adapt to external shocks, such as international sanctions against Russia.

Keywords

web-scraping, united information system on housing construction, DBSCAN, real estate economics, international sanctions against Russia

References

  1. Alekseenko A.P., Lavrentiev I.A., Latysheva N.E. Assessing Current State and Prospects for Housing Construction Development in the Far Eastern Federal District of the Russian Federation. Vestnik Universiteta, 2024. No. 2. P. 52–65. DOI: 10.26425/1816-4277-2024-2-52-65 (in Russian).
  2. Babkin R.A. The Spatial Structure of the Moscow Metropolis. Federalism, 2024. V. 29. No. 2. P. 110–130 (in Russian). DOI: 10.21686/2073-1051-2024-2-110-130.
  3. Dogucu M., Çetinkaya-Rundel M. Web Scraping in the Statistics and Data Science Curriculum: Challenges and Opportunities. Journal of Statistics and Data Science Education, 2021. V. 29. P. 112–122. DOI: 10.1080/10691898.2020.1787116.
  4. Ester M., Kriegel H.P., Sander J., Xu X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD, 1996. V. 96. No. 34. P. 226–231.
  5. Fan Y., Leung C.K.Y., Yang Z. Financial Conditions, Local Competition, and Local Market Leaders: The Case of Real Estate Developers. Pacific Economic Review, 2022. V. 27. No. 2. P. 131–193. DOI: 10.1111/1468-0106.12360.
  6. Gettner A. Geography, its History, Essence and Methods. Moscow: Yurajt, 2020. 426 p. (in Russian).
  7. Grushina O.V., Krasnoshtanova T.A. Crises of XXI Century, or How to Survive Housing Construction Industry in Russia. Public Administration. E-Journal (Russia), 2023. No. 95. P. 20–40 (in Russian).
  8. Kapralov E.G., Koshkarev A.V., Tikunov V.S., Zavarzin A.V., Lurie I.K., Rylskiy I.A., Trofimov A.M., Fleis M.E., Yarovykh V.B. Fundamentals of Geoinformatics. Textbook for Universities. In 2 books. Book 1. Moscow: Academia, 2004. 352 p. (in Russian).
  9. Kuricheva E.K. Housing Construction in the Moscow Agglomeration: Spatial Implications. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya (Moscow University Bulletin. Series 5. Geography), 2017. No. 3. P. 87–90 (in Russian).
  10. Lachininskii S.S., Logvinov I.A., Sorokin I.S. Modern Methods for Studying the Spatial Structure of Urban Agglomerations (A Case Study of the St. Petersburg Urban Agglomeration). Regional Research of Russia, 2024. V. 14. No. 2. P. 170–180. DOI: 10.1134/S2079970524600100.
  11. Logvinov I.A. Large-Scale Modeling of the Settlement of the Population of Komsomolsk-on-Amur According to the Register of Housing Stock Objects. The Second International Scientific and Practical Conference of the Student Scientific Society of St. Petersburg State University: Collection of articles. St. Petersburg: Skifiabook Publishing House – St. Petersburg State University, 2024. P. 184–191 (in Russian).
  12. Logvinov I.A., Lachininskii S.S. The Possibility of Using Data on Apartment Buildings of the Territorial Development Fund in the Study of Urban Agglomerations. InterCarto. InterGIS. Proceedings of the International Conference. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2023. V. 29. Part 2. P. 407–422 (in Russian). DOI: 10.35595/2414-9179-2023-2-29-407-422.
  13. Logvinov I.A., Lachininskii S.S., Nureev T.R. Creation of a Dataset for the Study of Spatial and Temporal Dynamics of Housing Construction Based on State Information System of Housing and Communal Services Data and Remote Sensing Data: Principles, Tools, Results. InterCarto. InterGIS. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2024. V. 30. Part 2. P. 498–515 (in Russian). DOI: 10.35595/2414-9179-2024-2-30-498-515.
  14. Lymar’ V.V., Karpov A.S., Krasnova O.A. Application of Parametric Methods for Mapping the Morphology of Urban Development on the Example of Vasileostrovsky District of St. Petersburg. Urban Studies, 2021. No. 1. P. 34–55 (in Russian). DOI: 10.7256/2310-8673.2021.1.35029.
  15. Makhrova A.G., Babkin R.A. Analysis of Pulsations of the Settlement System of the Moscow Agglomeration using Data from Mobile Operators. Regional Research, 2018. No. 2. P. 68–78 (in Russian).
  16. Manushin D.V. Anti-Sanction and Sanction Economic Policy of Russia in 2022–2025. Part 2: Aftermaths of Sanctions War, Management of Changes, Clarification of Research Concepts. Russian Journal of Economics and Law, 2024. V. 18. No. 2. P. 36–69 (in Russian). DOI: 10.21202/2782-2923.2024.1.36-69.
  17. Obuhov L.A., Panidi E.A. Toward Correctness Control of Postal Addresses Geocoding. InterCarto. InterGIS. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2021. V. 27. Part 2. P. 114–127 (in Russian). DOI: 10.35595/2414-9179-2021-2-27-114-127.
  18. Okunev I.Yu. Fundamentals of Spatial Analysis. Moscow: Aspekt Press, 2020. 255 p. (in Russian).
  19. Pilipenko I.V. Housing Construction in Russia during the 100-Year Period: Dynamics, Results and Socio-Economic Problems. Voprosy Ekonomiki (Economic Issues), 2025 No. 1. P. 134–158 (in Russian). DOI: 10.32609/0042-8736-2025-1-134-158.
  20. Pototskaya T.I. Corporative Geography as a Scientific Paradigm of the Branch Analysis. A.S. Posnikov’s Creative Legacy and Modernity. Proceedings of the International Scientific and Practical Conference, 2016. No. 10. P. 97–104 (in Russian).
  21. Puzanov A.S., Kosareva N.B., Polidi T.D. Basic Tendencies in Housing Economics of Russian Cities. Urban Studies and Practices, 2015. P. 34–55 (in Russian). DOI: 10.17323/usp00201534-55.
  22. Sluka N.A. Goals, Objectives and Problems of the Corporate Geography. Izvestia RAN. Seriya Geograficheskaya (News of the Russian Academy of Sciences. Geographical Series), 2016. No. 5. P. 38–45 (in Russian). DOI: 10.15356/0373-2444-2016-5-38-45.
  23. Souza T.G.D., Fonseca F.D., Fernandes V.D.O., Pedrassoli J.C. Exploratory Spatial Analysis of Housing Prices Obtained from Web Scraping Technique. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021. V. 43. P. 135–140. DOI: 10.5194/isprs-archives-XLIII-B4-2021-135-2021.
  24. Sternik S.G., Safronova N.B. Financialization of Real Estate Markets as a Macroeconomic Trend of the Digital Economy. Studies on Russian Economic Development, 2021. V. 32. No. 6. P. 676–682. DOI: 10.1134/S1075700721060149.
  25. Zubarevich N.V. Regions of Russia at the End of 2023: Have They Managed to Overcome the Crisis Recession? Issues of Economic Theory, 2024. No. 1. P. 34–47 (in Russian). DOI: 10.52342/2587-7666VTE_2024_1_34_47.

For citation: Logvinov I.A., Lachininskii S.S., Nureev T.R. GIS-analysis of housing construction during the period of international sanctions against Russia based on data from DOM.RF (using the example of the St. Petersburg metropolitan area). InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 3. P. 142–157. DOI: 10.35595/2414-9179-2025-3-31-142-157 (in Russian)