Geospatial analysis of tuberculosis distribution zone in St. Petersburg and Leningrad Region

DOI: 10.35595/2414-9179-2025-3-31-73-81

View or download the article (Rus)

About the Author

Ilya S. Kuznetsov

Saint Petersburg State University,
7/9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: ilya.kuznetsov.ilya@gmail.com

Abstract

Tuberculosis, being an aerogenic and socially significant disease, can act as a model when choosing methods for spatial assessment of the spread of other airborne diseases (such as COVID-19, etc.). The modern tuberculosis service in Russia is based on the territorial principle: one or more tuberculosis institutions are assigned to one administrative unit, whose tasks include conducting an epidemiological assessment of the spread of diseases in the territory. Data exchange between neighboring territories is limited. This makes it difficult to conduct interdisciplinary research for the territories of agglomerations. The purpose of this study was to primarily study the spatial features of the spread of tuberculosis in the territories of the agglomeration of St. Petersburg and the Leningrad Region, as well as to determine the risk areas for the spread of tuberculosis. The Federal Register of Tuberculosis Patients of two subjects was used as a source of information on tuberculosis cases. Information about patients included both newly diagnosed cases and recurrences of tuberculosis. A hypothesis has been put forward about the existence of “hidden” risk territories on the border of St. Petersburg, associated with the metropolis, but administratively located in the Leningrad Region. The main method of determining risk territories was the spatial autocorrelation method based on the Moran index. Software data processing was performed using open source software products (NextGIS, GeoDa). In the end, the territories of potential risk of tuberculosis spread were identified from among the municipalities of the St. Petersburg agglomeration and the spatial relationship between the territories with different indicators in absolute cases of tuberculosis was determined.

Keywords

cartography, geoinformation mapping, medical geography, medical GIS, geodata in medicine

References

  1. Bertazzon S. GIS and Public Health. ISPRS International Journal of Geo-Information, 2014. V. 3. P. 868–870. DOI: 10.3390/ijgi3030868.
  2. Carbajales-Dale P., Annan-Coultas D., Joseph A., Thompson M., Jafarifiroozabadi R., Limber S.P., Holaday B., Mihandoust S. Using GIS to Improve Public Health Emergency Response in Rural Areas During the COVID-19 Crisis: A Case Study of South Carolina, US. Transactions in GIS, 2023. V. 27. P. 975–995. DOI: 10.1111/tgis.13069.
  3. Galkin V.B., Sterlikov S.A., Balasanyants G.S., Yablonsky P.K. Dynamics of Multidrug-Resistant Tuberculosis and HIV Co-Infection Prevalence in Northwestern Russia. Medical Alliance, 2019. No. 2. P. 7–23 (in Russian).
  4. Kulikova I.B., Kuznetsov I.S., Korovka V.G., Beltyukov M.V., Galkin V.B., Sokolova O.P., Panidi E.A., Yablonsky P.K. Geoinformation Methods for Searching Territories at Increased Risk of Spreading Socially Significant Infections in Megacities (Using Tuberculosis as an Example). Medical Alliance, 2023. No. 4. P. 14–23 (in Russian). DOI: 10.36422/23076348-2023-11-4-14-27.
  5. Kuznetsov I.S., Politsinsky N.S., Kulanin P.A., Galkin V.B., Panidi E.A., Voronov D.V., Panteleev A.M., Yablonsky P.K. Identification of the Spatial Relationship Between Cases of Aerogenically Ttransmitted Diseases in Various Municipalities of St. Petersburg. Medical Alliance, 2025. V. 13. No. 2. P. 6–16 (in Russian). DOI: 10.36422/23076348-2025-13-2-6-16.
  6. Lachininsky S.S., Sorokin I.S. Spatial Structure and Development Features of Settlements in St. Petersburg Agglomeration. Baltic Region, 2021. V. 13. No. 1. P. 48–69 (in Russian). DOI: 10.5922/2079-8555-2021-1-3.
  7. Moran P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika, 1950. V. 37. No. 1. P. 17–23. DOI: 10.1093/biomet/37.1-2.17.
  8. Nechaeva O.B. Epidemiological Situation of Tuberculosis in Russia. Tuberculosis and Lung Diseases, 2018. V. 96. No. 8. P. 15–24 (in Russian). DOI: 10.21292/2075-1230-2018-96-8-15-24.
  9. Tatem A.J., Campbell J., Guerra-Arias M. et al. Mapping Malaria Risk in Africa for 2019. Nature Scientific Data, 2021. V. 8. No. 1. P. 91. DOI: 10.1038/s41597-021-00872-4.
  10. Vulfovich R.M. Development of St. Petersburg Agglomeration: Problems and Prospects. Russia: Development Trends and Prospects. Yearbook. XXII National Scientific Conference with International Participation. Iss. 18. Pt. 2. Moscow, 2023. P. 171–174 (in Russian).
  11. Zinchenko Yu.S., Basantsova N.Yu., Starshinova A.Ya., Umutbaeva G.B., Churilov L.P. Tuberculosis Today: Main Research Directions in Prevention, Diagnosis and Treatment. Russian Biomedical Research, 2018. V. 3. No. 4. P. 24–34 (in Russian).

For citation: Kuznetsov I.S. Geospatial analysis of tuberculosis distribution zone in St. Petersburg and Leningrad Region. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 3. P. 73–81. DOI: 10.35595/2414-9179-2025-3-31-73-81 (in Russian)