Geomorphometric assessment of soil erosion and gully development in foothill agricultural lands using remote sensing and GIS

DOI: 10.35595/2414-9179-2025-2-31-473-488

View or download the article (Eng)

About the Authors

Baitak Apshikur

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
69, Protozanova str., Ust-Kamenogorsk, 070004, Kazakhstan,
E-mail: bapshikur@edu.ektu.kz

Murat A. Rakhimov

NPJSC Abylkas Saginov Karaganda Technical University, Department of Building Materials and Technology,
56, Nursultan Nazarbayev ave., Karaganda, 100027, Kazakhstan,
E-mail: rahimov67@mail.ru

Anar D. Okasova

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
69, Protozanova str., Ust-Kamenogorsk, 070004, Kazakhstan,
E-mail: aokasova@edu.ektu.kz

Aliya B. Seilkhanova

D. Serikbayev East Kazakhstan Technical University, School of Earth Sciences,
69, Protozanova str., Ust-Kamenogorsk, 070004, Kazakhstan,
E-mail: aliya898@mail.ru

Abstract

This article explores the application of remote sensing (RS) and geographic information systems (GIS) to assess soil erosion and land degradation in the foothill agricultural areas of the East Kazakhstan Region. The study focuses on the vicinity of Beryozovka village, where erosion processes are particularly evident. High-resolution satellite imagery and SRTM-based Digital Elevation Model (DEM) were used to extract morphometric parameters such as slope, aspect, and valley depth. Spatial indicators including the LS-factor, Topographic Wetness Index (TWI), and surface runoff accumulation were applied to determine zones of erosion susceptibility and quantify soil degradation intensity. As a result, the total volume of gully erosion in the study area was estimated at 864,467.4 m3, and the annual soil loss based on LS-factor modeling was calculated to be 46,154 m3. These figures highlight the scale of degradation in foothill croplands and the need for targeted mitigation. Based on the findings, a set of erosion control measures was proposed, including contour plowing, terracing, maintaining vegetation cover, and installing hydraulic structures. The outcomes of this research provide critical spatial data and actionable recommendations for sustainable land management and agricultural planning in erosion-prone environments.

Keywords

soil erosion, remote sensing, gully formation, GIS analysis, foothill agriculture

References

  1. Apshikur B., Alimkulov M.A., Kapasov A.K., Toleubekyzy I.T. Innovative Technology for Assessing the Degradation of the Earth by Sand Desertification of Soils with Specialized Processing of Space Materials. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 223–235 (in Russian). DOI: 10.35595/2414-9179-2024-2-30-223-235.
  2. Apshikur B., Kurmangaliyev T.B., Goltsev A.G., Alimkulov M.M., Kapasov A.K. The Method of Multi-Criteria Analysis for Determining the Flood-Hazardous Area and the Development of Protective Structures. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-5/W2-2023, 2023. No. 5. V. XLVIII. P. 9–17. DOI: 10.5194/isprs-archives-XLVIII-5-W2-2023-9-2023.
  3. Apshikur B., Maksimov V.A., Toleubekyzy I.T., Alimkulov M.M. Current Assessment of Atmospheric Pollution by Industrial Enterprises in Ust-Kamenogorsk Based on GIS Technologies. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 469–481 (in Russian). DOI: 10.35595/2414-9179-2024-2-30-469-481.
  4. Asangaliyev E.A., Apshikur B., Lutay S.S., Assylkhanova Z.A. Spatial Analysis and Mapping of Potential Wildfires from Landsat Satellite Data. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 1. P. 476–490 (in Russian). DOI: 10.35595/2414-9179-2024-1-30-476-490.
  5. Bruno M., Beaudoin N., Justes E., Machet J. Calculation of Nitrogen Mineralization and Leaching in Fallow Soil Using a Simple Dynamic Model. European Journal of Soil Science, 2008. V. 50. P. 549–566. DOI: 10.1046/j.1365-2389.1999.00264.x.
  6. Golubev I. The Development of Planar Soil Erosion from the Action of Meltwater in the Central Part of the Krasnoyarsk Forest-Steppe. Advances in Transdisciplinary Engineering. Hydraulic and Civil Engineering Technology. No. VIII. IOS Press, 2023. P. 1218–1223. DOI: 10.3233/ATDE230853.
  7. Hoang T.H.N., Nguyen M.H., Bui Q.D. A Combined Approach for Sustainable Use of mountainous agricultural land: land suitability evaluation and ecological economic model. Vietnam Journal of Earth Sciences, 2022. V. 44 (4). P. 451–469. DOI: 10.15625/2615-9783/17118.
  8. Jenčo M., Fulajtár E., Bobál’ová H., Mateˇcný I., Saksa M., Kožuch M., Gallay M., Kaˇnuk J., Píš V., Oršulová V. Mapping Soil Degradation on Arable Land with Aerial Photography and Erosion Models, Case Study from Danube Lowland, Slovakia. Remote Sensing, 2020. V. 12 (24). No. 4047. DOI: 10.3390/rs12244047.
  9. Kopecký M., Kopecký M., Macek M., Wild J. Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant Species Composition. Science of the Total Environment, 2021. V. 757. P. 143785. DOI: 10.1016/J.SCITOTENV.2020.143785.
  10. Krasnoyarova B., Vinokurov Y., Antyufeeva T. International Water Development Problems in the Transboundary Irtysh River Basin: “New” Solutions to Old Problems. IOP Conference Series: Earth and Environmental Science, 2019. V. 381. P. 012049 (in Russian). DOI: 10.1088/1755-1315/381/1/012049.
  11. Kunypiyaeva G.T., Zhapayev R.K., Mustafaev M.G., Kakimzhanov Y., Kyrgyzbay K., Seilkhan A.S. Soil Cultivation methods’ Impact on Soil Water-Physical Properties Under Rainfed Conditions of Southeast Kazakhstan. SABRAO Journal of Breeding and Genetics, 2023. V. 55 (6). P. 2115–2127. DOI: 10.54910/sabrao2023.55.6.23.
  12. Maltsev K.A., Yermolaev O.P. Potential Soil Loss from Erosion on Arable Lands in the European Part of Russia. Eurasian Soil Sciences, 2019. V. 52. P. 1588–1597. DOI: 10.1134/S106422931912010X.
  13. Mashudi M. Estimation of Erosion Potentials through Utilization of Remote Sensing Data and the Universal Soil Loss Equation Model. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 2023. V. 12. P. 223. DOI: 10.23960/jtep-l.v12i1.223-235.
  14. Nazarenko N., Panina M., Sherstobitov Y. Modern Agro-Climatic Resources of Kazakhstan and Central Asia. IOP Conference Series: Earth and Environmental Science, 2023. V. 1212. No. 012052. DOI: 10.1088/1755-1315/1212/1/012052.
  15. Ogorodnikov S. The use of remote sensing data in the assessment of the Land Degradation Neutrality. IOP Conference Series: Earth and Environmental Science, 2022. V. 1010. No. 012040. DOI: 10.1088/1755-1315/1010/1/012040.
  16. Panagos P., Borrelli P., Meusburger K. A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences, 2015. P. 117–126. DOI: 10.3390/geosciences5020117.
  17. Pásztor L., Waltner I., Centeri Cs., Belényesi M., Takács K. Soil erosion of Hungary assessed by spatially explicit modelling. Journal of Maps, 2016. V. 12 (sup1). P. 407–414. DOI: 10.1080/17445647.2016.1233913.
  18. Rakhymberdina M., Daumova G., Apshikur B., Shults R., Toguzova M., Assylkhanova Zh., Kolpakova V., Kapasov A. Integrated Chemical-Geoecological Monitoring and Engineering Approaches for Pollution Reduction in the Yertis River. Engineered Science, 2024. V. 32. P. 1328. DOI: 10.30919/es1328.
  19. Rawat K.S., Mishra A.K., Bhattacharyya R. Soil Erosion Risk Assessment and Spatial Mapping Using LANDSAT-7 ETM+, RUSLE, and GIS—a Case Study. Arabian Journal of Geosciences, 2016. V. 9. No. 288. DOI: 10.1007/s12517-015-2157-0.
  20. Rukhovich D., Koroleva P., Rukhovich D., Kalinina N. The Use of Deep Machine Learning for the Automated Selection of Remote Sensing Data for the Determination of Areas of Arable Land Degradation Processes Distribution. Remote Sensing, 2021. V. 13. No. 155. DOI: 10.3390/rs13010155.
  21. Sadenova M.A., Beisekenov N.A., Apshikur B., Khrapov S.S., Kapasov A.K., Mamysheva A.M., Klemeš J.J. Modelling of Alfalfa Yield Forecasting Based on Earth Remote Sensing (ERS) Data and Remote Sensing Methods, Chemical Engineering Transactions, 2022. V. 94. P. 697–702. DOI: 10.3303/CET2294116.
  22. Salumbo A.M. A Review of Soil Erosion Estimation Methods. Agricultural Sciences, 2020. V. 11. P. 667–691. DOI: 10.4236/as.2020.118043.
  23. Shinde V., Sharma A., Tiwari K., Singh M. Quantitative Determination of Soil Erosion and Prioritization of Micro-Watersheds Using Remote Sensing and GIS. Journal of the Indian Society of Remote Sensing, 2011. V. 39. P. 181–192. DOI: 10.1007/s12524-011-0064-8.
  24. Suleimenov B. Research and Ways of Solving the Problem of Waterlogging of Arable Land in Northern Kazakhstan. International Journal of GEOMATE, 2023. V. 25. No. 110. P. 29–39. DOI: 10.21660/2023.110.3895.
  25. Sun W., Shao Q., Liu J. Soil Erosion and its Response to the Changes of Precipitation and  egetation Cover on the Loess Plateau. Journal of Geographical Sciences, 2013. V. 23. P. 1091–1106. DOI: 10.1007/s11442-013-1065-z.
  26. Surinov A.V. Agro-Ecological Assessment of the Condition of Arable Soils of the CCR. IOP Conference Series, 2023. V. 1206 (1). P. 012011. DOI: 10.1088/1755-315/1206/1/012011.
  27. Telkar Sh., Pratap Sh., Solanki Sh., Dey J., Kant K. Soil Erosion: Types and Their Mechanism. International Journal of Economic Plants, 2024. V. 2. P. 178–180.
  28. Terekhov A., Sagatdinova G., Murzabaev B. Estimation of Average Long-Term Soil Salinity of Arable Land Golodnaya Steppe in Kazakhstan. E3S Web of Conferences, 2023. V. 449. No. 06004. DOI: 10.1051/e3sconf/202344906004.
  29. Toguzova M.M., Rakhymberdina M.Y., Kulenova N.A., Shaimardanov Z.K., Assylkhanova Z.A., Apshikur B., Beisekenov N.A. Analysis of Process Modeling in Modern Software Program to Support “Smart” Agriculture, Chemical Engineering Transactions, 2022. V. 94. P. 871–876. DOI: 10.3303/CET2294145.
  30. Trofimetz L.N., Panidi E.A. Methods of the Geomorphometry, Remote Sensing and GIS in Study of the 40k Radionuclide Distribution in Soil of Arable Slopes, Complicated with Erosion Network. Proceedings of the International Conference “InterCarto. InterGIS” 2016. V. 22 (1). P. 183–189 (in Russian). DOI: 10.24057/2414-9179-2016-1-22-183-189.
  31. Tucci B., Nolè G., Lanorte A., Santarsiero V., Cillis G., Scorza F., Murgante B. Assessment and Monitoring of Soil Erosion Risk and Land Degradation in Arable Land Combining Remote Sensing Methodologies and RUSLE Factors. Lecture Notes in Computer Science, 2021. V. 12954. P. 704–716. DOI: 10.1007/978-3-030-86979-3_50.
  32. Wang J., Yang J., Li Zh., Ke L., Li Q., Fan J., Wang X. Research on Soil Erosion Based on Remote Sensing Technology: A Review. Agriculture, 2024. V. 15. No. 1. P. 18. DOI: 10.3390/agriculture15010018.
  33. Wen Zh., Changbiao Zh. Evaluation of Sustainable Utilization of Arable Land in Mountainous Areas of Yunnan Province Based on the Second National Land Survey. E3S Web of Conferences, 2018. V. 53. P. 03004. DOI: 10.1051/e3sconf/20185303004.
  34. Wischmeier W.H., Smith D.D. Predicting rainfall erosion loss: A Guide to Conservation Planning. Agricultural Handbook No. 537. US Department of Agriculture. Washington: Agricultural Research Service, 1978. P. 58.
  35. Yapiyev V., Gilman C., Kabdullayeva T. et al. Top Soil Physical and Chemical Properties in Kazakhstan Across a North-South Gradient. Scientific Data, 2018. V. 5. No. 180242. DOI: 10.1038/sdata.2018.242.
  36. Zhang P., Xia L., Sun Z. et al. Analysis of Spatial and Temporal Changes and Driving Forces of Arable Land in the Weibei Dry Plateau Region in China. Scientific Reports, 2023. V. 13. P. 20618. DOI: 10.1038/s41598-023-43822-3.
  37. Zhang L., Zhang L., Zhang D., Cen Y., Wang S., Zhang Y., Gao L. Analysis of Seasonal Water Characteristics and Water Quality Responses to the Land Use/Land Cover Pattern: A Case Study in Tianjin, China. Water, 2023. V. 15 (5). No. 867. DOI: 10.3390/w15050867.
  38. Zivotic L., Perović V., Jaramaz D., Djordevic A., Petrović R., Todorovic M. Application of USLE, GIS and Remote Sensing in the Assessment of Soil Erosion Rates in Southeastern Serbia. Polish Journal of Environmental Studies, 2012. V. 21. P. 1929–1935.

For citation: Apshikur B., Rakhimov M.A., Okasova A.D., Seilkhanova A.B. Geomorphometric assessment of soil erosion and gully development in foothill agricultural lands using remote sensing and GIS. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 473–488. DOI: 10.35595/2414-9179-2025-2-31-473-488