Rivers of the Easter Azov region as a product of geomorphological technogenesis

DOI: 10.35595/2414-9179-2025-2-31-196-211

View or download the article (Rus)

About the Authors

Anatoly V. Pogorelov

Kuban State University,
149, Stavropolskaya str., Krasnodar, 350040, Russia,
E-mail: pogorelov_av@bk.ru

Andrey A. Laguta

Kuban State University,
149, Stavropolskaya str., Krasnodar, 350040, Russia,
E-mail: alaguta@icloud.com

Evgeny N. Kiselev

Kuban State University,
149, Stavropolskaya str., Krasnodar, 350040, Russia,
E-mail: enkiselev@gmail.com

Abstract

The environment-forming importance of medium and small rivers is underestimated by researchers, although these particular ecosystems are highly vulnerable and subject to irreversible technogenic transformation. One of the key factors in the transformation of medium and small steppe rivers in the South of Russia is the regulation of runoff caused by the mass construction of dams. Until now, insufficient attention has been paid to the geomorphological technogenesis of steppe rivers. The aim of the study is to assess the geomorphological consequences of the construction of water-retaining hydraulic structures on typical rivers of the Eastern Azov Region (Kirpili and Ponura). The initial data are materials of airborne laser scanning and digital aerial photography conducted in July–August 2019 (low-water period) along the river beds, as well as field studies. The survey area is 1 333 km2, the density of laser reflection points is 15–20 points/m2. Vectorization of water bodies and analysis of river channel morphology were performed using the constructed DEM with a spatial resolution of 1 m. The relief of river valleys was analyzed using geomorphometry tools using the MaxDifferenceFromMean index. Based on the DEM data, the characteristics of hydraulic structures and ponds were calculated in the GIS environment. The constructed longitudinal profiles have the form of steps (ledges) between water-retaining structures. Thus, in the Kirpili channel, on a section with a length of 217 km, there are 82 blocking structures; dry sections of channels (11 in total) occupy 2.9 km. The total area of ponds formed by the backwater from the damming structures in the Kirpili riverbed is 3 862 hectares with an average pond area of 55 ha. The dismemberment of the riverbed into fragments separated by dams leads to a radical restructuring of geomorphological processes in the river system with a decrease in the morphodynamic activity of the riverbed flow, including deep and lateral erosion. As a consequence of geomorphological technogenesis, the rivers, transformed into a chain of reservoirs, have lost their ecosystem functions.

Keywords

Eastern Azov Region, river systems, damming water-retaining structures, airborne laser scanning, digital elevation model, geomorphological technogenesis

References

  1. Bashinsky I.V., Kadetov N.G., Senkevich V.A., Stoyko T.G., Katsman E.A. Osipov V.V. Transformations of floodplain water body ecosystems under conditions of modern natural and anthropogenic changes and possible conservation strategies. Advances in Current Biology, 2024. V. 144. No. 1. P. 80–96 (in Russian). DOI: 10.31857/S0042132424010063.
  2. Chalov R.S., Kamyshev A.A. Concepts of Hydromorphology and River Morphodynamics in Riverbed Processes Science. Izvestia RAN. Seriya Geograficheskaya (News of the Russian Academy of Sciences. Geographical Series), 2020. V. 84. No. 6. P. 844–854 (in Russian). DOI: 10.31857/S2587556620060047.
  3. Downing J.A. Emerging Global Role of Small Lakes and Ponds: Little Things Mean a Lot. Limnetica, 2010. V. 29. No. 1. P. 9–24.
  4. Drovovozova T.I., Panenko N.N. Ecological State of Small Rivers of the Rostov Region. Ecology and Water Management, 2019. No. 1 (01). P. 1–17 (in Russian).
  5. Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z., Knowler D.J., Leveque C., Naiman R.J., Prieur-Richard A.H., Soto D., Stiassny M.L., Sullivan C.A. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biological Reviews of the Cambridge Philosophical Society, 2006. V. 81. No. 2. P. 163–82. DOI: 10.1017/S1464793105006950.
  6. Fedorova S.I., Chebanova E.F., Artyukhin Yu.V. Responses of Longitudinal Profiles and River Mouths of the Azov and Black Sea Basins to the Variability of Natural Factors and Anthropogenic impact. Erosion and Riverbed Processes, 2010. V. 5. P. 387–406 (in Russian).
  7. Gudymovich S.S. River Terraces (Some Comments on Morphology, Genesis and Classification). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2005. V. 308. No. 5. P. 57–61 (in Russian).
  8. Keith D.A., Rodríguez J.P., Brooks T.M., Burgman M.A., Barrow E.G., Bland L., Comer P.J., Franklin J., Link J., McCarthy M.A., Miller R.M., Murray N.J., Nel J., Nicholson E., Oliveira-Miranda M.A., Regan T.J., Rodríguez-Clark K.M., Rouget M., Spalding M.D. The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters, 2015. V. 8. P. 214–226. DOI: 10.1111/conl.12167.
  9. Knighton D. Fluvial Forms and Processes: A New Perspective. Don Mills, Ontario: Oxford University Press, 1998. 383 p.
  10. Kondratiev N.E., Popov I.V., Snishchenko B.F. Fundamentals of the Hydromorphological Theory of Channel Processes. Leningrad: Gidrometeoizdat, 1982. 272 p. (in Russian).
  11. Kosolapov A.E., Dandara N.T., Kapustin M.V. On the Development of a Methodology for Preparing Comprehensive Plans for the Restoration and Sustainable Functioning of Small and Medium-Sized River Basins. Society. Environment. Development, 2017. No. 3. P. 96–90 (in Russian).
  12. Laguta A.A., Pogorelov A.V. On the Reconstruction of the Landforms of the Ancient Embanked Floodplain Based on Airborne Laser Scanning Data (Krasnodar). Resistance of Natural Landscapes and their Components to External Influences. Collection of Proceedings of the International Scientific and Practical Conference. Grozny, 2024. P. 338–342 (in Russian).
  13. Lindsay J.B., Cockburn J.M.H., Russell H.A.J. An Integral Image Approach to Performing Multi-Scale Topographic Position Analysis. Geomorphology, 2015. V. 245. P. 51–61. DOI: 10.1016/j.geomorph.2015.05.025.
  14. Lurye P.M., Panov V.D. Rivers of the Azov Sea Basin: Hydrography and Flow Regime. Rostov-on-Don: Donskoy Publishing House, 2021. 672 p. (in Russian).
  15. Makarevich A.A., Yarotov A.E. River Runoff and Channel Processes. Minsk: BSU, 2019. 115 p. (in Russian).
  16. Makkaveev N.I. River Channel and Erosion in its Basin. Moscow: Academy of Sciences of USSR, 1955. 347 p. (in Russian).
  17. Makkaveev N.I. Runoff and Channel Processes. Moscow: Moscow University Press, 1971. 116 p. (in Russian).
  18. Newton A.C. Strengthening the Scientific Basis of Ecosystem Collapse Risk Assessments. Land, 2021. V. 10. Iss. 11. P. 1252. DOI: 10.3390/land10111252.
  19. Nikanorov A.M., Bryzgalo V.A., Reshetnyak O.S. Rivers of Russia in Emergency Environmental Situations. Rostov-on-Don: SEC, 2006. 308 p. (in Russian).
  20. Pogorelov A.V., Laguta A.A., Kiselev E.N., Lipilin D.A. Features of the Long-Term Transformation of the Krasnodar Reservoir, Near the Mouth of the Kuban River, Russia. Journal of Geographical Sciences, 2021. V. 31. P. 1895–1904. DOI: 10.1007/s11442-021-1928-7.
  21. Pogorelov A.V., Laguta A.A., Netrebin P.B., Lipilin D.A. Analysis of the Bottom Topography of the Reservoir Due to Sediment Trapping (According to the Krasnodar Reservoir, Russia). Geography, Environment, Sustainability, 2023. V. 16. No. 3. P. 102–112. DOI: 10.24057/2071-9388-2023-2907.
  22. Pogorelov A.V., Lipilin D.A., Dudkina A.A., Kopaneva O.V. On Technogenic Transformations of the River Network on the Azov-Kuban Plain (Chelbas, Albashi Rivers). InterCarto. InterGIS. Proceedings of the International Conference, 2022. V. 28. Part 2. P. 567–582 (in Russian). DOI: 10.35595/2414-9179-2022-2-28-567-582.
  23. Pogorelov A.V., Lipilin D.A., Kiselev E.N. On Changes in the Hydrographic CharacteristicsRivers in Steppe Agrolandscapes over the Past Decades (on the Example of the Beysug River Basin, Krasnodar Territory). InterCarto. InterGIS. Proceedings of the International Conference, 2021. V. 27. Part 4. P. 19–32 (in Russian). DOI: 10.35595/2414-9179-2021-4-27-19-32.
  24. Pogorelov A.V., Lipilin D.A., Kuzyakina M.V. On Technogenic Degradation of River Systemsthe Eastern Azov Region: Hydrographic Aspect. Geology and Geophysics of Russian South, 2024. V. 14. No. 3. P. 243–259 (in Russian). DOI: 10.46698/i4469-5379-6925-p.
  25. Schumm S.A. The Fluvial System. New York: John Wiley & Sons, 1977. 338 p.
  26. Surface Water Resources of the USSR. V. 8. North Caucasus. Leningrad: Gidrometeoizdat, 1973. 447 p. (in Russian).
  27. Suslov O.N. Steppe Rivers of Krasnodar Region. Krasnodar: Kuban State Agrarian University, 2015. 256 p. (in Russian).
  28. Suzdaleva A.L., Goryunova S.V. Technogenesis and Degradation of Surface Water Bodies. Moscow: Energy, 2014. 456 p. (in Russian).
  29. Suzdaleva A.L., Goryunova S.V. General Scheme of Development of the Process of Anthropogenic Degradation of Water Bodies. National Association of Scientists (NAS). Technical Sciences, 2015. No. IV (9). P. 92–95 (in Russian).
  30. Vekshina T.V., Bolshakov V.A., Korinets E.M. Environmental Problems of Shipping River Beds: Study Guide. St. Petersburg: Mediapapir, 2022. 132 p. (in Russian).

For citation: Pogorelov A.V., Laguta A.A., Kiselev E.N. Rivers of the Easter Azov region as a product of geomorphological technogenesis. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 2. P. 196–211. DOI: 10.35595/2414-9179-2025-2-31-196-211 (in Russian)