Ecosystem restoration in Russia: PLANGEA project data usage opportunities

DOI: 10.35595/2414-9179-2025-1-31-296-309

View or download the article (Rus)

About the Authors

Andrey S. Prilipov

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: andrei.prilipov@yandex.ru

Oksana A. Klimanova

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: oxkl@yandex.ru

Abstract

Within the framework of the United Nations Decade on Ecosystem Restoration, announced for the period from 2021 to 2030, the relevant task is to develop effective methods of inventory and prioritization of disturbed ecosystems for their further restoration. In 2020, the International Institute for Sustainable Development created the PLANGEA multi-criteria geoinformation model, designed to identify priority areas of terrestrial ecosystems in need of restoration. The purpose of the current study is to assess the applicability of the PLANGEA model for the inventory of these ecosystems in the Russian Federation and to analyze their transformation processes. The work uses open data from the PLANGEA project and multi-time maps of the European Space Agency land cover for the period from 1992 to 2020. A spatial analysis of the distribution of priority sites for restoration across the territory of the Russian Federation with the allocation of zones of national and global levels has been carried out. For a detailed study of the processes of ecosystem degradation, two regions contrasting by their natural conditions and anthropogenic impact have been selected—the Yaroslavl and Murmansk regions. It has been revealed that the most priority areas of ecosystems at the national level are concentrated mainly in the European part of Russia in areas of mixed and broad-leaved forests subject to intensive agricultural activity. Priority areas of global ecosystems are located in the taiga and mountainous northeastern regions of the Asian part of the country, where deforestation is the main threat. The analysis of land cover transformation has shown the multidirectional nature of degradation processes within the allocated areas and their fragmented nature, which indicates the insufficient accuracy of the PLANGEA model for practical application in Russian conditions and the need to adapt the methodology to regional specifics.

Keywords

ecosystem restoration, degraded ecosystems, biodiversity conservation, climate change, geospatial modeling, PLANGEA project

References

  1. Alimov A.A., Amirkhanov A.M., Belonovskaya E.A., Bolshakov V.N., Wompersky S.E., Gunin P.D., Denisov V.V., Isaev A.S., Krivenko V.G., Matishov G.G., Minaeva T.Yu., Puzachenko A.Yu., Reshetnikov Yu.S., Sirin A.A., Tishkov A.A., Chernov Yu.I., Shatunovsky M.I., Pavlov D.S. The State of Biodiversity of Natural Ecosystems in Russia. Ministry of Natural Resources of the Russian Federation. Moscow: NIA-Priroda, 2004. 116 p. (in Russian).
  2. Bukvareva E.N., Zamolodchikov D.G. Ecosystem Services in Russia: Prototype of the National Report. V. 1. Services of Terrestrial Ecosystems. Moscow: Publishing House of the Center for Wildlife Protection, 2016. 148 p. (in Russian).
  3. Dickson B., Miles L., Thornton H., O’Connell E., Agra R., Baines O., Brooks H., Critchley M., Klimmek H., Schlemm A., Tshwene-Mauchaza B. Becoming #GenerationRestoration. Ecosystem Restoration for People, Nature and Climate. United Nations Environment Programme, 2021. 56 p.
  4. Dinerstein E., Olson D., Joshi A., Vynne C., Burgess N.D., Wikramanayake E., Hahn N., Palminteri S., Hedao P., Noss R., Hansen M., Locke H., Ellis E.C., Jones B., Barber C.V., Hayes R., Kormos C., Martin V., Crist E., Sechrest W., Price L., Baillie J.E.M., Weeden D., Suckling K., Davis C., Sizer N., Moore R., Thau D., Birch T., Potapov P., Turubanova S., Tyukavina A., De Souza N., Pintea L., Brito J.C., Llewellyn O.A., Miller A.G., Patzelt A., Ghazanfar S.A., Timberlake J., Klöser H., Shennan-Farpón Y., Kindt R., Lillesø J.B., Van Breugel P., Graudal L., Voge M., Al-Shammari K.F., Saleem M. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience, 2017. V. 67. Iss. 6. P. 534–545. DOI: 10.1093/biosci/bix014.
  5. The IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups. Gland, Switzerland: IUCN, 2020. 192 p.
  6. Nelson C., Romero A., Hallett J., Aronson J., Cohen-Shacham E., Diederichsen A., Guariguata M., Toledo B.D.A., Gann G. Principles for Ecosystem Restoration to Guide the United Nations Decade 2021–2030. Food and Agriculture Organization of the United Nations, 2021. 21 p.
  7. Strassburg B., Iribarrem A., Beyer H., Cordeiro C., Crouzeilles R., Jakovac C., Junqueira A., Lacerda E., Latawiec A., Balmford A., Brooks T., Butchart S., Chazdon R., Erb K., Brancalion P., Buchanan G., Cooper H., Diaz S., Donald P., Visconti P. Global Priority Areas for Ecosystem Restoration. Nature, 2020. V. 586. P. 724–729. DOI: 10.1038/s41586-020-2784-9.

For citation: Prilipov A.S., Klimanova O.A. Ecosystem restoration in Russia: PLANGEA project data usage opportunities. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 296–309. DOI: 10.35595/2414-9179-2025-1-31-296-309 (in Russian)