Assessment and mapping of the northern geosystems sustainability to the hazardous cryogenic processes activation

DOI: 10.35595/2414-9179-2025-1-31-26-49

View or download the article (Rus)

About the Authors

Larisa I. Zotova

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: zotlar@mail.ru

Marina A. Vikulina

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: masanna2003@mail.ru

Abstract

The article considers one of the urgent tasks of cryolithozone geoecology—predictive assessment of cryogenic landscapes response to impulse anthropogenic mechanical impacts. This problem is especially significant at pre-project stages of engineering and geographical surveys in northern territories. The content of the author’s methodology for compiling matrix legends and landscape-typological maps, as well as a step-by-step procedure for assessing the stability of northern geosystems to anthropogenic impacts are presented. The methodology was developed and tested at the Geography Faculty of the Lomonosov Moscow State University. It is based on the analysis of the influence of leading natural factors on the stability of cryogenic landscapes during anthropogenic disturbance of the surface, considering the freezing and thawing processes that determine the development of hazardous relief-forming processes. The methodology was tested on a number of test sites located in the arctic and subarctic natural zones in the Western Siberia north. A comparative analysis of the potential stability of landscapes (at the level of natural boundaries and terrain types) to the activation of hazardous relief-forming processes was carried out. The assessment and subsequent mapping were carried out at different scales (from 1:50 000 to 1:500 000). The main methods for assessing the sustainability of landscapes were landscape indication, decoding of remote sensing data, expert assessments, calculation and statistical and spatial analysis. The ranking of geocomplexes by the degree of vulnerability to anthropogenic development was carried out on a landscape basis using integral indices obtained in various ways. This made it possible to compile assessment permafrost-geoecological maps aimed at substantiating restrictions on mechanical impacts on the natural environment.

Keywords

cryolithozone, cryogenic processes, geoinformation mapping, landscape research, assessment methodology

References

  1. Bolysov S.I., Bredikhin A.V., Borsuk O.A., Eremenko E.A., Zaitsev G.A., Lukashov A.A., Nekhodtsev V.A., Panin A.V., Rychagov G.I., Safyanov G.A., Simonova T.Yu., Kharchenko S.V. Ecological Geomorphology: New Directions. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2015. 220 p. (in Russian).
  2. Chigir V.G., Lanchakov G.A., Kulkov A.N. Geoecological Conditions of the North of the West Siberian Plain and Problems of Stability of the Cryogeosystem to Technogenesis. Problems of General and Applied Geoecology of the North. Moscow: Moscow University Press, 2001. P. 222–236 (in Russian).
  3. Dzagoeva E.A. The Relationship between the Concepts of “Landscape” and “Geosystem” in Geographical Space and Time. Tomsk State University Journal, 2012. No. 357. P. 182–185 (in Russian).
  4. Fedorov A.N. Permafrost Landscapes: Classification and Mapping. Geosciences, 2019. V. 9. No. 468. P. 1–3. DOI: 10.3390/geosciences9110468.
  5. Isachenko A.G. Landscape Science and Physical-Geographical Zoning. Moscow: Vysshaya Shkola (Higher School), 1991. 336 p. (in Russian).
  6. Jorgenson M.T., Douglas T.A., Shur Y.L., Kanevskiy M.Z. Mapping the Vulnerability of Boreal Permafrost in Central Alaska in Relation to Thaw Rate, Ground Ice, and Thermokarst Development. Journal of Geophysical Research: Earth Surface, 2025. V. 130. Iss. 6. DOI: 10.1029/2024JF008030.
  7. Jorgenson M.T., Kanevskiy M.Z., Jorgenson J.C., Liljedahl A., Shur Y., Epstein H., Kent K., Griffin C.G., Daanen R., Boldenow M., Orndahl K., Witharana S., Jones B.M. Rapid Transformation of Tundra Ecosystems from Ice-Wedge Degradation. Global and Planetary Change, 2022. V. 216. Art. 103921. DOI: 10.1016/j.gloplacha.2022.103921.
  8. Kizyakov A., Leibman M. Cryogenic Relief Formation Processes: A Review of 2010–2015 Publications. Earth’s Cryosphere, 2016. V. XX. No. 4. P. 40–52. DOI: 10.21782/KZ1560-7496-2016-4(45-58).
  9. Marinskikh D., Marshinin A., Idrisov I. Large-scale Landscape Mapping for Environmental Risk Assessment in the Arctic of Western Siberia (Russia). GI_Forum, 2017. V. 1. P. 3–14. DOI: 10.1553/giscience2017_01_s3.
  10. Medvedkov A.A. Response of Middle-Taiga Permafrost Landscapes of Central Siberia to Global Warming in the Late 20th and Early 21st Centuries. IOP Conference Series: Earth and Environmental Science, 2016. V. 48. Art. e012009. DOI: 10.1088/1755-1315/48/1/012009.
  11. Medvedkov A.A. Geoenvironmental Factors of Resilience of Arctic Cities in the Cryolithozone: Theoretical Approaches to the Study. Izvestia RAN. Seriya Geograficheskaya (News of the Russian Academy of Sciences. Geographical Series), 2021. No. 85 (5). P. 726–739 (in Russian). DOI: 10.31857/S2587556621050071.
  12. Moskalenko N.G. Anthropogenic Dynamics of Vegetation of the Plains of the Cryolithozone of Russia. Novosibirsk: Nauka, 1999. 280 p. (in Russian).
  13. Moskalenko N.G. Changes in Vegetation of the North of Western Siberia in the Context of Changing Climate and Technogenic Disturbances. Izvestiya Russkogo Geograficheskogo Obshestva (Proceedings of the Russian Geographical Society), 2012. No. 1 (144). P. 63–72 (in Russian).
  14. Moskovchenko D.V., Gubarkov A.A. Soil Temperature Regimes on the Southern Border of the Zone of Frozen Bogs in Western Siberia. Dokuchaev Soil Bulletin, 2023. Iss. 117. P. 23–51 (in Russian). DOI: 10.19047/0136-1694-2023-117-23-51.
  15. Nikolaev V.A. Classification and Small-Scale Mapping of Landscapes. Moscow: Moscow University Press, 1978. 62 p. (in Russian).
  16. Shpolyanskaya N.A., Osadchaya G.G., Malkova G.V. Modern Climate Change and the Reaction of the Cryolithozone (On the Example of Western Siberia and the European North of Russia). Geographical Environment and Living Systems, 2022. No. 1. P. 6–30 (in Russian). DOI: 10.18384/2712-7621-2022-1-6-30.
  17. Shpolyanskaya N.A., Zotova L.I. Map of Potential Stability of Landscapes of the Cryolithozone of Western Siberia. Moscow University Bulletin. Series 5. Geography, 1994. No. 1. P. 56–65 (in Russian).
  18. Tumel N.V. Activation of Dangerous Cryogenic Processes. Geography, Society, Environment. V. 1. Moscow: Gorodets, 2004. P. 344–357 (in Russian).
  19. Tumel N.V., Koroleva N.A. Permafrost-Landscape Differentiation of the Cryolithozone of Russia as a Basis for Ecological-Geological Research. Engineering Geology World, 2008. No. 2. P. 11–14 (in Russian).
  20. Tumel N.V., Zotova L.I. Diagnostics and Mapping of Geoecological Situations in the Permafrost Zone of Russia. Geosciences, 2019. V. 9. Iss. 8. Art. 353. P. 1–31. DOI: 10.3390/geosciences9080353.
  21. Tumel N.V., Zotova L.I. Geoecology of the Permafrost Zone. Moscow: Urait, 2023. 204 p. (in Russian).
  22. Vysotskaya A.A., Medvedkov A.A. Climate-Driven Changes of Kurum Landscapes in the West of the Central Siberian Plateau within the Middle Taiga Zone. Moscow University Bulletin. Series 5. Geography, 2024. No. 4. P. 7–29 (in Russian). DOI: 10.55959/MSU0579-9414.5.79.4.2.
  23. Zotova L.I., Vikulina M.A. Scientific and Methodological Aspects of Teaching Courses on Geoecological Problems of Flat and Mountainous Territories in the Cryolithozone. Geographical Environment and Living Systems, 2024. No. 3. P. 123–148 (in Russian). DOI: 10.18384/2712-7621-2024-3-123-148.

For citation: Zotova L.I., Vikulina M.A. Assessment and mapping of the northern geosystems sustainability to the hazardous cryogenic processes activation. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 1. P. 26–49. DOI: 10.35595/2414-9179-2025-1-31-26-49 (in Russian)