Geoinformation modeling of population density dynamics in the Stavropol Krai

DOI: 10.35595/2414-9179-2024-2-30-327-336

View or download the article (Rus)

About the Authors

Igor Yu. Katorgin

North-Caucasian Federal University, Department of Cartography and Geoinformatics,
16/1, Kulakova Ave., Stavropol, 355044, Russia,
E-mail: katorgin1974@mail.ru

Pavel P. Turun

North-Caucasian Federal University, Department of Physical Geography and Cadastres,
16/1, Kulakova Ave., Stavropol, 355044, Russia,
E-mail: turun_geo61@mail.ru

Alexander N. Roman

North-Caucasian Federal University, Department of Cartography and Geoinformatics,
16/1, Kulakova Ave., Stavropol, 355044, Russia,
E-mail: roman_alex@mail.ru

Dmitry V. Yurin

North-Caucasian Federal University, Department of Physical Geography and Cadastres,
16/1, Kulakova Ave., Stavropol, 355044, Russia,
E-mail: rinyu@yandex.ru

Abstract

The article is dedicated to the issues of geoinformation modeling of population density dynamics at the regional level, as well as the territorial features of the distribution and changes in the population of the Stavropol Krai for the period from 1959 to 2020. To model the population density of the constituent entity based on data from the All-Union and All-Russian censuses, a method was chosen to create digital models using algorithms for estimating kernel density. MapInfo geographic information software with the Vertical Mapper and Global Mapper modules, which have the necessary functionality for modeling and analysis spatial data, were chosen as tools for spatial analysis and mapping of population density. The author’s methodology for creating population density maps is proposed, which makes it possible to take into account the entire area and configuration of a settlement when performing modeling and, accordingly, more accurately display the settlement framework. Using modeling technologies and spatial analysis we identified regional features of population density dynamics in the Stavropol Krai for the last six census periods in particular, as well as for the 60-year period 1959–2020, in general. The presented methodology for creating maps of changes in population density in a region allows us to reflect with a high degree of reliability the ongoing changes in the evolution of settlement. The created models can be useful for studying settlement and demographic processes in the territory of the Stavropol Krai; they allow drawing conclusions and predicting the directions of development of certain parts of the region; they can also be useful in carrying out territorial planning and making management decisions within the framework of regional policy.

Keywords

geographic information technologies, geographic information modeling, dasymetric maps, Stavropol Krai, population density

References

  1. City and village in European Russia: a hundred years of change. Moscow: OGI, 2001. 560 p. (in Russian).
  2. Dobryakova V.A., Dobryakov A.B. Modeling of temporal development of population taking into account the situation of municipalities in the resettlement system (on the example of the Tyumen Region). InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of International Conference, 2020. V. 26. Part 1. P. 215–227 (in Russian). DOI: 10.35595/2414-9179-2020-1-26-215-227.
  3. Epanechnikov V.A. Nonparametric estimation of multivariate probability density. Theory of Probability & Its Applications, 1969. V. 14. Iss. 1. P. 156–161 (in Russian). DOI: 10.1137/1114019.
  4. Friedmann J. Regional development policy. Boston: Mass. Intst. Techn., 1966. 233 p.
  5. Gritsai O.V., Yoffe G.A., Treyvish A.I. Center and periphery in regional development. Moscow: Nauka, 1991. 167 p. (in Russian).
  6. Kushnyr O.V. Development of a methodology for mapping areas of population concentration. PhD dissertation in techn. sc. Moscow: Moscow State University of Geodesy and Cartography, 2015. 117 p. (in Russian).
  7. Makhmudov R.K., Eshrokov V.M., Cherkasov A.A., Turun P.P., Lutsenko D.A. GIS modeling of local settlement systems of the Budennovsky municipal district of the Stavropol Territory. Geodesy and Cartography, 2023. No. 10. P. 29–38 (in Russian). DOI: 10.22389/0016-7126-2023-1000-10-29-38.
  8. Polyan P.M. Dasymetric maps of V.P. Semenov-Tyan-Shansky and their prospects in the information field of the 21 Century. Izvestia RAS. Seriya Geograficheskaya (News of the Academy of Sciences of Russia. Geographical series), 2012. No. 6. P. 98–106 (in Russian). DOI: 10.15356/0373-2444-2012-6-98-106.
  9. Rodoman B.B. New polarization of Russian space. Poles and centers of growth in regional development. Moscow: IG RAS, 1998. P. 31–36 (in Russian).
  10. Rylsky I.A., Gribok M.V., Chereshnya O.Yu., Kalinkin I.V. Method of creating animated maps of urban population dynamics in Russian Federation during 1959–2018. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of International Conference, 2019. V. 25. Part 1. P. 138–150 (in Russian). DOI: 10.35595/2414-9179-2019-1-25-138-150.
  11. Semenov-Tyan-Shansky V.P. Dasymetric map of European Russia. Petrograd: Scientific Chemical-Technical Publishing House, 1923. 26 p. (in Russian).
  12. Turun P.P. The main features of the transformation of rural settlement in the Stavropol Krai in 1959–2010. Geography issues. Sat. 135: Geography of population and social geography. Moscow: Publishing house “Kodeks”, 2013. P. 322–335 (in Russian).
  13. Vorobyov N.V., Vorobyov A.N. Mapping subregional types of population dynamics of Irkutsk region. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of International Conference, 2021. V. 27. Part 4. P. 361–372 (in Russian). DOI: 10.35595/2414-9179-2021-4-27-361-372.
  14. Zayonchkovskaya Zh.A. Demographic situation and settlement. Moscow: Nauka, 1991. 132 p. (in Russian).

For citation: Katorgin I.Yu., Turun P.P., Roman A.N., Yurin D.V. Geoinformation modeling of population density dynamics in the Stavropol Krai. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 327–336. DOI: 10.35595/2414-9179-2024-2-30-327-336 (in Russian)