Possibilities of a differentiated approach to assessment of water erosion soil loss in agricultural fields contaminated with radiocaesium (upper Oka basin)

DOI: 10.35595/2414-9179-2024-2-30-263-281

View or download the article (Rus)

About the Authors

Lyubov N. Trofimetz

Orel State University, Institute of Natural Sciences and Biotechnology,
95, Komsomolskaya str., Orel, 302026, Russia,
E-mail: trofimetc_l_n@mail.ru

Evgeny A. Panidi

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
33, 10th line of Vasil’evsky island, St. Petersburg, 199178, Russia,
E-mail: panidi@ya.ru, e.panidi@spbu.ru

Arkady V. Tarasov

Orel State University, Medical Institute, Department of Internal Medicine,
95, Komsomolskaya str., Orel, 302026, Russia,
E-mail: arcorel@yandex.ru

Aleksandr O. Barkalov

Orel State University, Institute of Natural Sciences and Biotechnology,
95, Komsomolskaya str., Orel, 302026, Russia,
E-mail: 7oup@mail.ru

Abstract

The paper presents the results of studying the soil loss due to water erosion in an agricultural field located on the arable slope of the southern exposure at an experimental area located in the territory of the Oryol district of the Oryol Region (in the upper Oka basin). The research is based on the author’s in situ data. The use of a very high resolution satellite imagery, a digital elevation model (DEM), which was used to calculate morphometric relief indicators (catchment area and profile curvature), a large amount of data of the integrally selected soil samples in a 0–25 cm layer (more than 500), gamma-spectrometric and agrochemical analysis of soil samples together allowed us to develop a system of dependencies for 11 estimated zones. The catchment area and profile curvature were used as predictors. The zones differ in the degree of dissection of the surface by the hollow complex and by the slopes of the surface. For the watershed surface, an estimated zone is proposed that bounds the area of 500 m2 catchment area values. Caesium-137 acts as a marker of the degree of soil runoff. The high variability of caesium-137 in the experimental area is due, among other things, to the presence of pile-collapse furrows on the sloping surface. A gridded map of the soil runoff intensity compiled according to the developed equations shows that the soil loss intensity due to water erosion varies from 5 to 20 t/ha per year. Within 11 estimated zones, there is a difference in the areas of high-intensity soil runoff plots (20 t/ha per year and more). The regional methodology proposed in the article for soil losses assessment using caesium-137 radionuclide and morphometric topography indicators requires verification by an independent method.

Keywords

Chernobyl origin caesium-137, satellite images, catchment area, profile curvature, soil runoff intensity, GIS

References

  1. Akhtyrtsev B.P., Shchetinina A.S. The change of gray forest soils of the Central Russian forest steppe in the process of agricultural development. Saransk, 1969. 164 p. (in Russian).
  2. Alifanov V.M., Gugalinskaya L.A., Ovchinnikov A.Yu. Paleocryogenesis and soil diversity of the center of the East European Plain. Moscow: GEOS, 2010. 160 p. (in Russian).
  3. Bobrovitskaya N.N. Water erosion on slopes and runoff of river sediments. Doctoral dissertation in geographic sciences. St. Petersburg: SHI Publishing, 1995. 58 p. (in Russian).
  4. Borisov B.A. Easily decomposable organic matter of virgin and arable soils of zonal range of the European part of Russia. Author’s abstract of doctoral dissertation, biological sciences. Moscow: MTAA Publishing, 2008. 43 p. (in Russian).
  5. Chendev Yu.G. Agrotechnogenic change of dark gray forest soils of the Central forest steppe over the past 200 years. Eurasian Soil Science, 1977. V. 1. P. 10–21 (in Russian).
  6. Costa-Cabral M.C., Burges S.J. Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 1994. V. 30. Iss. 6. P. 1681–1692. DOI: 10.1029/93WR03512.
  7. Evans L.S. General geomorphometry, derivatives of altitude, and descriptive statistics. Spatial Analysis in Geomorphology. London, Methuen & Co. Ltd., 1972. P. 17–90.
  8. Golosov V.N., Zhidkin A.P., Petelko A.I., Osipova M.S., Ivanova N.N., Ivanov M.M. Field verification of erosion models based on studies of a small catchment area in the Vorobzhi River basin (Kursk Region). Eurasian Soil Science, 2022. No. 10. P. 1321–1338 (in Russian). DOI: 10.31857/S0032180X22100045.
  9. Imshennik E.V. Cartographic forecasting of 137Cs pollution in the regions of Russia most affected by the Chernobyl accident. Author’s abstract of PhD dissertation in geographic sciences. Moscow: Publishing of IGCE RRAS, 2011. 22 p. (in Russian).
  10. Karpachevsky L.O. The mirror of the landscape. Moscow: Mysl’, 1983. 156 p. (in Russian).
  11. Karpachevsky L.O. Ecological soil science. Moscow: GEOS, 2005. 337 p. (in Russian).
  12. Kiryushin V.I. Ecologization of agriculture and technological policy. Moscow: Publishing House of the Moscow Timiryazev Agricultural Academy, 2000. 473 p. (in Russian).
  13. Kovda V.A. Soil cover, its improvement, use and protection. Moscow: Nauka, 1981. 182 p. (in Russian).
  14. Kukharuk N.S., Chendev Yu.G., Petin A.N. Features micromorphological organic matter agrogennoy in transformation of soil forest-steppe zone. Belgorod State University Scientific Bulletin. Series: Natural Sciences, 2011. V. 15 (110). Iss. 16. P. 168–179 (in Russian).
  15. Lobb D.A., Kachanoski R.G., Miller M.H. Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Canadian Journal of Soil Science, 1995. V. 75. No. 2. P. 211–218. DOI: 10.4141/cjss95-029.
  16. Mabit L., Benmansour M., Walling D.E. Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. Journal of Environmental Radioactivity, 2008. V. 99. Iss. 12. P. 1799–1807. DOI: 10.1016/j.jenvrad.2008.08.009.
  17. Markelov M.V. Modern erosion-accumulative processes in the upper parts of hydrographic network of the forest and forest-steppe zones. Author’s abstract of PhD dissertation in geographic sciences. Moscow: Moscow University Press, 2004. 22 p. (in Russian).
  18. Olson K.R., Gennadiyev A.N., Zhidkin A.P., Markelov M.V., Golosov V.N., Lang J.M. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena, 2013. V. 104. P. 103–110. DOI: 10.1016/j.catena.2012.10.015.
  19. Ovchinnikov A.Yu. Paleocryogenesis as a factor of differentiation of modern soils and soil cover of the center of East European Plain. Author’s abstract of PhD dissertation in biological sciences. Moscow: Moscow University Press, 2009. 24 p. (in Russian).
  20. Porto P., Walling D.E., La Spada C., Callegari G. Validating the use of 137Cs measurements to derive the slope component of the sediment budget of a small rangeland catchment in southern Italy. Land Degradation & Development, 2016. V. 27. Iss. 3. P. 798–810. DOI: 10.1002/ldr.2388.
  21. Quijano L., Beguería S., Gaspar L., Navas A. Estimating erosion rates using 137Cs measurements and WATEM/SEDEM in a Mediterranean cultivated field. Catena, 2016. V. 138. P. 38–51. DOI: 10.1016/j.catena.2015.11.009.
  22. Shary P.A. Assessment of the relief-soil-plants interlinkages using new methods of geomorphometry. Author’s abstract of PhD dissertation, biological sciences. Tolyatti: Publishing of ISSP of Russian Academy of Sciences, 2005. 23 p. (in Russian).
  23. Tarazanova T.V. Diagnostics of the degree of tillage of soils in the zonal range of the European part of Russia. Author’s abstract of PhD dissertation in biological sciences. Moscow: MTAA Publishing, 2002. 148 p. (in Russian).
  24. Tishkina E.V., Ivanova N.N. Soil cover of cultivated and intact slopes of balkas in the Kursk oblast. Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya (Lomonosov Geography Journal), 2010. V. 6. P. 72–79 (in Russian).
  25. Trofimetz L.N., Panidi E.A., Kochurov B.I., Chaadaeva N.N., Tyapkina A.P., Saraeva A.M., Tarasov A.V., Barkalov A.O., Petelko A.I. Quantitative assessment of erosional soil loss in various areas of the arable slope (Upper Oka Basin). InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International Conference. Moscow: Faculty of Geography of MSU, 2023. V. 29. Part 1. P. 361–377 (in Russian). DOI: 10.35595/2414-9179-2023-1-29-361-377.
  26. Trofimetz L.N., Panidi E.A., Lavrusevich A.A. Some features of the radiocaesium method applied to study of soil losses due to erosion on the periglacial area of the Upper Oka basin. Geomorphologiya, 2022. V. 53. No. 5. P. 154–161 (in Russian). DOI: 10.31857/S0435428122050170.
  27. Walling D.E., He Q. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality, 1999. V. 28. No. 2. P. 611–622.

For citation: Trofimetz L.N., Panidi E.A., Tarasov A.V., Barkalov A.O. Possibilities of a differentiated approach to assessment of water erosion soil loss in agricultural fields contaminated with radiocaesium (upper Oka basin). InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 2. P. 263–281. DOI: 10.35595/2414-9179-2024-2-30-263-281 (in Russian)