View or download the article (Rus)
About the Authors
Olga A. Petrova
19, Serikbayeva str., Ust-Kamenogorsk, 070004, Kazakhstan,
E-mail: OPetrova@edu.ektu.kz
Gulzhan K. Daumova
19, Serikbayeva str., Ust-Kamenogorsk, 070004, Kazakhstan,
E-mail: gulzhan.daumova@mail.ru
Natalya F. Denissova
19, Serikbayeva str., Ust-Kamenogorsk, 070004, Kazakhstan,
E-mail: NDenisova@edu.ektu.kz
Gulnara M. Iskaliyeva
117, Kamenskoe plat., Almaty, 050020, Kazakhstan,
E-mail: igm.ionos@gmail.com
Alena V. Yelisseyeva
117, Kamenskoe plat., Almaty, 050020, Kazakhstan,
E-mail: yelisseyevaa@gmail.com
Abstract
The article discusses the use of GIS technologies in the study of avalanche activity in the East Kazakhstan Region. The research results presented in the article were obtained at the first stage of the survey of the territory of the region according to various factors and criteria that may be important for the level of avalanche activity in the region. Earth remote sensing (ERS) data is necessary for the development of avalanche hazard monitoring systems and scientific substantiation of the placement of sensors of the system on avalanche-prone slopes. The first step in this research is to build a digital elevation model (DEM) using SRTM data. The paper then provides an overview of the atmospheric precipitation identification methods used in the research. These methods are based on the use of optical remote sensing data, which includes the assessment of special indicators and indices. The following indicators were considered: the NDSI index for assessing the coverage of the Earth’s surface with snow or glaciers; the CHIRPS and GSMaP dataset for assessing climatic hazards associated with precipitation; data from the ERA5 reanalysis of the European Center for Medium-Range Weather Forecasts ECMWF to assess the climate and weather over the past few decades in the East Kazakhstan Region. In addition, to understand the characteristics of the underlying surface affecting spontaneous avalanches in particular, the NDWI index to assess the moisture content of the studied area. Based on the results of historical satellite data from Sentinel-2 images, various digital models were built for the East Kazakhstan Region based on the above-mentioned indicators. These models were used at the first stage of assessing the territory of the region by climatic characteristics to further create higher-resolution digital models for the most problematic avalanche-prone areas.
Keywords
References
- Baghsorkhi A.R., Motamedvaziri B., Samani A.N., Ahmadi H., Moeini A. Snow avalanche risk management in Shemshak region: A modelling, mapping and evaluation of factors affecting the occurrence of snow avalanches. Current Science, 2022. V. 122. No. 6. P. 717–734. DOI: 10.18520/cs/v122/i6/717-734.
- Caiserman A., Sidle R.C., Gurung D.R. Snow Avalanche Frequency Estimation: 32 years of remote hazard 2 monitoring in Afghanistan. The Cryosphere, 2022. V. 16. P. 3295–3312. DOI: 10.5194/tc-16-3295-2022.
- Funk C., Peterson P., Landsfeld M. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2015. V. 2. 150066. DOI: 10.1038/sdata.2015.66.
- Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.N. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020. V. 146. No. 730. P. 1999–2049. DOI: 10.1002/qj.3803.
- Korzeniowska K., Bühler Y., Marty M., Korup O. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery. Natural Hazards and Earth System Sciences, 2017. V. 17. P. 1823–1836. DOI: 10.5194/nhess-17-1823-2017.
- Liu J., Shangguan D., Liu S., Ding Y., Wang S., Wang X. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981–2015. Atmospheric Research, 2019. V. 230. 104634. DOI: 10.1016/j.atmosres.2019.104634.
- Mityok Z.K., Bolton D.K., Coops N.C., Berman E.E., Senger S. Snow cover mapped daily at 30 m resolution using a fusion of multi-temporal MODIS NDSI data and Landsat surface reflectance. Canadian Journal of Remote Sensing, 2018. V. 44. No. 5. P. 413–434. DOI: 10.1080/07038992.2018.1538775.
- Polidori L., El Hage M. Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sensing, 2020. V. 12. No. 21. 3522. DOI: 10.3390/rs12213522.
- Tong R., Parajka J., Komma J., Blöschl G. Mapping snow cover from daily Collection 6 MODIS products over Austria. Journal of Hydrology, 2020. V. 590. 125548. DOI: 10.1016/j.jhydrol.2020.125548.
- Vernay M., Lafaysse M., Monteiro D., Hagenmuller P., Nheili R., Samacoïts R., Verfaillie D., Morin S. The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021). Earth System Science Data Discussions, 2022. V. 14. P. 1707–1733. DOI: 10.5194/essd-14-1707-2022.
For citation: Petrova O.A., Daumova G.K., Denissova N.F., Iskaliyeva G.M., Yelisseyeva A.V. Geoinformation research for monitoring snow avalanches in the East Kazakhstan region of the Republic of Kazakhstan. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 1. P. 545–555. DOI: 10.35595/2414-9179-2024-1-30-545-555 (in Russian)