Application of discrete orthogonal transformations for identifying and displaying municipal solid waste in geoinformation systems on the Earth’s surface

DOI: 10.35595/2414-9179-2024-1-30-507-533

View or download the article (Eng)

About the Authors

Maretta L. Kazaryan

North Ossetian State Medical Academy of the Ministry of Health of the Russian Federation,
40, Pushkinskaya str., Vladikavkaz, Republic of North Ossetia—Alania, 362019, Russia,
E-mail: marettak@bk.ru

Mikhail A. Shahramanian

SSI “Institute for Scientific Research of Aerospace Monitoring ‘AEROCOSMOS’ ”,
4, Gorokhovsky ln., Moscow, 105064, Russia,

Financial University under the Government of the Russian Federation,
49/2, Leningradsky ave., Moscow, 125167, Russia,

E-mail: 7283763@mail.ru

Vladimir S. Tikunov

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: vstikunov@yandex.ru

Irina N. Tikunova

Lomonosov Moscow State University,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: irina.tikunova@icloud.com

Abstract

Space monitoring in conditions of increased risk of emergencies of a natural and man-made nature and the involvement of medical and preventive measures to maintain the health of the population (flora, fauna) in critical situations is an urgent task. The method of digital spectral transformations is widely used in a variety of applied problems. In particular, when processing space information, it is advisable to use them. Cosmic information, in general, in mathematical representation, is a multidimensional variety. When working with ordinary images we have a two-dimensional manifold, when working with stereo images we have three-dimensional manifolds, when working with a series of stereo images (time series) we have four-dimensional manifolds. The mathematical basis for determining anomalous signal structures in the surrounding background is the concept of continuous orthogonal transformations; in this work we will specifically consider the Fibonacci transformations. The paper examines the problem of optimal zone coding using a discrete Fibonacci transform and analyzes the main properties of this transform, derives estimates of the spectrum of a discrete Fibonacci transform on a class of Lipchitz signals and clarifies the form of the selection matrix S when performing compression through zone coding using a discrete Fibonacci transform. An experiment is presented to identify unauthorized solid waste on the Earth’s surface using research conducted on the basis of discrete orthogonal transformations.

Keywords

compression of the signal, space monitoring, remote sensing of the Earth, emergency situations, medical and preventive measures, discrete orthogonal transformations

References

  1. Agaian S.S. Successes and problems of fast orthogonal transformations. Recognition, classification, prognosis. Moscow: Nauka, 1990. Iss. 3. P. 146–214 (in Russian).
  2. Agaian S.S., Aizenberg N.N., Alaverdian S.B. Discrete Fibonacci transformation. Problems of theoretical cybernetics. Abstracts of the III World Conference. Gorky, 1988. P. 5–67 (in Russian).
  3. Agaian S., Alaverdian S. Fast orthogonal Fibonacci transform. Osaka, Japan: Proc. Int. Coll. On Coding Theory, 1998. P. 335–353.
  4. Bergman G.A number system with an irrational base. Mathematics Magazine, 1957. No. 31. P. 98–119.
  5. Bertrand-Mathis A. Comment écrire les nombres entiers, dans une base qui n’est pas entiѐre. Acta Mathematica Hungarica, 1989. V. 54. No. 3–4. P. 237–241 (in French).
  6. Chernov V.M. Discrete orthogonal transformations on fundamental domains of canonical number systems. Computer optics, 2013. V. 37. No. 4. P. 484–488 (in Russian).
  7. Chernov V.M. Discretionary orthogonal transformations at the molecular level associated with complete researchers. Proceedings of the Institute of Mathematics and Mechanics of the Russian Academy of Sciences, 2020. V. 26. No. 3. P. 249–257 (in Russian).
  8. Crippen R.E. Calculating the vegetation index faster. Remote Sensing of Environment, 1990. V. 34. P. 71–73.
  9. Fraenkel A. Systems of numeration. American Mathematical Monthly, 1985. V. 92. P. 105–114.
  10. Fraenkel A. The use and usefulness of numeration systems. Information and Computation, 1989. V. 81. No. 1. P. 46–61.
  11. Garcia L.A., Foged N., Cardon G. A GIS-Based Model to Estimate Relative Reductions in Crop Yield Due to Salinity and Waterlogging: Philosophy and Development. ASCE Journal of Irrigation and Drainage Engineering, 2006. No. 132 (6). P. 553–563.
  12. Glumov N., Myasnikov V., Sergeyev V. Polynomial bases for image processing in a sliding window. Pattern Recognition and Image Analysis, 1994. V. 4. No. 4. P. 408–413.
  13. Golubov B.I., Efimov A.V., Skvortsov V.A. Walsh series and transformations: Theory and applications. Moscow: URSS, LKI, 2008. 352 p. (in Russian).
  14. Gonzalez R., Woods R. Digital image processing. Moscow: Technosphere, 2019. 1104 p. (in Russian).
  15. Gradstein I.S., Ryzhik I.M., Tables of integrals, sums, series and products. Moscow: Fizmatgiz, 1963. 1100 p. (in Russian).
  16. Hall M. Combinatorial Theory. Waltham (Massachusetts)–Toronto–London: Blaisdell Publishing Company, 1967.
  17. Ivashko A.V., Algorithms and devices for digital processing and data transmission based on integer exponential basis sequences. Abstract of the dissertation … of PhD of technical sciences. Kharkov, 1983. 20 p. (in Russian).
  18. Kazaryan M.L. Mathematic—systemic researching with the involvement of fractals when processing of space surveillance systems on recognition of waste disposal objects. Aerospace Research in Bulgaria. Bulgarian Academy of Sciences. Space Research and Technology Institute, 2021. V. 33. P. 124–139.
  19. Kazaryan M.L., Shakhramanyan M.A., Nedkov R., Borisova D., Avetisyan D. Fractal presentation of space images during waste disposal sites monitoring. Proceedings of Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), 2019 (a). V. 111740. DOI: 10.1117/12.2532890.
  20. Kazaryan M.L., Shahramanian M.A., Voronin V.V. The automated space-monitoring system of waste disposal sites. Remote Sensing Technologies and Applications in Urban Environments III, Berlin, Germany: Proceedings of SPIE Remote Sensing, 2018 (a). V. 1079318. DOI: 10.1117/12.2500059.
  21. Kazaryan M.L., Shahramanian M.A., Zabunov S. Investigation of the similarity algorithm of the satellite images storage system for stability on the basis of Haar wavelets according to Tikhonov. Aerospace Research in Bulgaria, Bulgarian Academy of Sciences. Space Research and Technology Institute, 2019 (b). V. 31.
  22. Kazaryan M.L., Shahramanian M.A., Zabunov S. Investigation of the basic Haar wavelet-transformations in the problem of decryption of space images on detection of waste disposal fields. Aerospace Research in Bulgaria. Bulgarian Academy of Sciences. Space Research and Technology Institute, 2018 (b). V. 30. P. 96–103.
  23. Kazaryan M.L., Voronin V.V. Satellite image processing based on percolation for physico-chemical analysis of soil cover of industrial waste facilities. Sensors and Systems for Space Applications XIV. Proceedings of SPIE, 2021. V. 117550W. DOI: 10.1117/12.2587769.
  24. Korn G., Korn T. Handbook of Mathematics for researchers and Engineers. Definitions, theorems, formulas. Moscow: Nauka, 1978. 832 p. (in Russian).
  25. Lezhnev A. Dynamic programming in economic problems: A textbook. Moscow: Prosveshchenie–Binom, 2017. 505 p. (in Russian).
  26. Manzo C. Integrated remote sensing for multi-temporal analysis of anthropic activities in the south-east of Mt. Vesuvius National Park. Journal of African Earth Sciences, 2016. V. 122. P. 63–78.
  27. Nadudvari A. Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland). International Journal of Coal Geology, 2014. V. 128–129. P. 47–54.
  28. Shovengerdt R.A. Remote sensing. Models and methods of image processing: A textbook. Moscow: Technosphere, 2013. 624 p. (in Russian).
  29. Stakhov A., Luzhnetsky V. Computer arithmetic of digital computers in Fibonacci codes and the “golden” proportion. Moscow: Academy of Sciences of USSR, 1981. 64 p. (in Russian).
  30. Umnyashkin S.V. Fundamentals of the theory of signal processing: A textbook. Moscow: Technosphere, 2021. 550 p. (in Russian).

For citation: Kazaryan M.L., Shahramanian M.A., Tikunov V.S., Tikunova I.N. Application of discrete orthogonal transformations for identifying and displaying municipal solid waste in geoinformation systems on the Earth’s surface. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 1. P. 507–533. DOI: 10.35595/2414-9179-2024-1-30-507-533