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ABSTRACT 
Space monitoring in conditions of increased risk of emergencies of a natural and man-made 

nature and the involvement of medical and preventive measures to maintain the health of the 
population (flora, fauna) in critical situations is an urgent task. The method of digital spectral 
transformations is widely used in a variety of applied problems. In particular, when processing 
space information, it is advisable to use them. Cosmic information, in general, in mathematical 
representation, is a multidimensional variety. When working with ordinary images we have a two-
dimensional manifold, when working with stereo images we have three-dimensional manifolds, 
when working with a series of stereo images (time series) we have four-dimensional manifolds. 
The mathematical basis for determining anomalous signal structures in the surrounding 
background is the concept of continuous orthogonal transformations; in this work we will 
specifically consider the Fibonacci transformations. The paper examines the problem of optimal 
zone coding using a discrete Fibonacci transform and analyzes the main properties of this 
transform, derives estimates of the spectrum of a discrete Fibonacci transform on a class of 
Lipchitz signals and clarifies the form of the selection matrix S when performing compression 
through zone coding using a discrete Fibonacci transform. An experiment is presented to identify 
unauthorized solid waste on the Earth’s surface using research conducted on the basis of discrete 
orthogonal transformations.  
 
KEYWORDS: compression of the signal, space monitoring, remote sensing of the Earth, emer-
gency situations, medical and preventive measures, discrete orthogonal transformations 
 
INTRODUCTION 

The paper discusses a mathematical approach in research devoted to space monitoring and 
analysis of satellite images [Kazaryan, 2021]. 

One of the quantitative characteristics of any image is the spectral brightness of its 
elements. It is this characteristic that is fundamental when performing image recognition and 
identifying changes in certain areas of the Earth using satellite images [Crippen, 1990; Garcia et 
al., 2006; Schowengerdt, 2013]. 
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Space monitoring in conditions of increased risk of emergencies of a natural and man-made 
nature and the involvement of medical and preventive measures to maintain the health of the 
population (flora, fauna) in critical situations is a global, urgent task [Nadudvari, 2014; Manzo, 
2016; Kazaryan, Voronin, 2021]. 

When performing monitoring, periodic observation of a fixed section of the study area is 
necessary. Photographic surveys from an Earth satellite are exposed to external factors that 
interfere with obtaining objective information — the state of the atmosphere, the season of the 
year, the position of the sensor, etc. To get out of the situation, additional procedures are used: 
atmospheric correction, creation of index images, normalization. They are performed during 
filming and this is inconvenient in terms of additional time and material costs [Schovengerdt, 
2013]. 

It is necessary to look for another way to solve the problem, and this solution is to use the 
apparatus of discrete orthogonal transformations (DOT) [Hall, 1967; Gonzalez, 2019; Umnyash-
kin, 2021]. 

 It should be noted that the main reasons for the increased interest in the study and 
application of DOT are related to the transition to a new reference system in the spectral region, 
linearity, reversibility and energy conservation, which is characteristic of orthogonal transfor-
mations, the presence of effective fast algorithms, etc. [Golubov et al., 2008]. 

Aerospace research problems are faced with the problem of reducing redundancy and 
efficient coding (data compression), which arises in connection with the processing of huge flows 
of information presented in the form of digital signals. 

The task of compressing space images and discarding non-informative elements leads to 
an increase in brightness, which is the main feature in recognizing municipal solid waste (MSW) 
using GIS associated with images on the Earth’s surface. The problems of constructing and using 
data compression systems are closely related to the automation of scientific research. In this regard, 
the task of data compression, being the main means of increasing the efficiency of space image 
processing, acquires great practical importance.  

There are two main methods for selecting spectral components: zonal and threshold. Zonal 
selection consists of isolating a set of components occupying certain fixed areas of the spectrum, 
and the threshold compression method preserves only those spectral components whose value 
exceeds a set threshold. Threshold coding systems provide a more correct choice of transmitted 
samples (in terms of the magnitude of distortion), but they have disadvantages, in particular, the 
need to encode additional information about the addresses of transmitted samples. So, we will 
investigate the following problem. 

Task. Find such a DOT for a given class of signals (N — dimensional random vectors) 
such that the signal reconstructed from M ( M < N ) spectrum components has a minimum (in the 
sense of root-mean-square) deviation from the input. 

As is known [Golubov et al., 2008], this problem has an analytical solution and this is the 
Karunen-Loewe transformation (K-L), which is built on the basis of the eigenfunctions of the 
covariance matrix K. In applied problems, its use is not advisable due to the fact that it is necessary 
to perform a large number of calculations: O(N3) operations to determine the eigenfunctions K and 
O(N2) operations for the transformation itself.  

For applied problems, Fourier transforms, real trigonometric transforms of Hadamard, 
Walsh, Haar, etc., which have fast algorithms, are widely used (FА). 

In this work we will consider Fibonacci DOT (DTFb) [Stakhov, 1981, 1984].  
Of course, these transformations cannot represent some alternative to the classical DOT, but in 
some cases they have useful applications [Fraenkel, 1985, 1989]. 
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RESEARCH MATERIALS AND METHODS 
Preliminary studies: properties of the Fibonacci Transformation 

Let’s consider orthogonal Fibonacci transformations [Agaian, Alaverdian, 1988; Agaian et 
al., 1988; Bertrand-Mathis, 1989; Agaian, 1990; Bergman, 1997]. 

 
Fibonacci transformation. Let ( )x0  integrated on  )1,0  function, N natural number, 
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Function system ( )  Nkxk ,0, =  called the Fibonacci system. The Fibonacci system is 

orthogonal (proof below), but not orthonormal. Let’s introduce another system (2) and we will 
also call it the Fibonacci system: 
 

 

(2) 
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This system with const=0  is orthonormal. The proof of this statement is given below. 
Let us introduce the concept of a discrete Fibonacci function. For a natural number N, we 

define the functions ( )kxN , : 
 

( ) ( ) NkNxkx N
x

kN ,,1,1,,1,0,, 2
12  =−== +  

 
and matrix (3): 
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( ) NkNxkxNN ,,1,1,,1,0,,  =−==   (3). 
 

Let’s call it the Fibonacci matrix. Here is a general view of the Fibonacci matrix (4): 
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Let us present the Fibonacci matrix corresponding to the orthonormal Fibonacci system for 

the case of N = 8 as an example. 
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Let us list the main properties of the Fibonacci system. 
Property № 1. System ( )  Nkxk ,1, =  is orthogonal on  )1,0 . Proof: 

 
If k < m, then 
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According to the statement ( )xk  (1), we will have: 
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( )xk  = 0 by U
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From here it goes, 
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where i  — meaning )(xi  on interval i . 

 
In interval i , ( ) Nixi ,1, =  are constantly and define by 21 −− += iii  , in 

other words are numbers of Fibonacci. Therefore, the equality is true (7): 
 

 

1
1

2
+

=

= kk

k

i
i   (7) 

 
 
With looking on (6) and (7) statement (5) among zero. Therefore, system 
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Property № 2. System ( ) NkxФ ki ,1,, =  — is orthonormal (proof similar to point 1). 
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Let }{ k  — sequence of numbers, then α, β — positive real numbers, and for any n the 

following relation holds: 
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then the Fibonacci matrix looks like (8): 
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Property № 5. The determinant of a Fibonacci matrix of order N is equal to the product of 

the diagonal elements and the number 1+n , those first N + 1 Fibonacci numbers. 
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Property № 6. For the practical application of DOT, it is important to have a way to 

quickly calculate it, a fast conversion algorithm. The main criterion for an algorithm when 
implemented on a computer is the number of arithmetic operations. Direct (10) and inverse (11) 
Fibonacci transformations have the form: 
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So, 
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Fig. 1а shows the algorithm of the direct fast Fibonacci transformation for N = 8. Let’s 

consider the Fibonacci inverse transformation algorithm. From (11) we have: 
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Expression (14) is represented as follows: 
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Formula (14) is a fast inverse transformation scheme for N = 8, where: 
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a) 

Fast direct Fibonacci  
conversion algorithm 

b) 
Fast Fibonacci inverse  

transformation algorithm 
 

Fig. 1. Representation of the fast Fibonacci transformation algorithm for N = 8 
 

Property № 7. The complexity of calculating the forward and reverse Fibonacci transfor-
mations. The lower bound of the complexity of algorithms [Golubov et al., 2008] calculating the 
orthogonal transformation based on the basis of F is estimated: 
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where jiF ,  — the determinant of the minor of the matrix F. 
 

 jj
j

A  ,max , 

 
where j  and j  — constants used in the class of algorithms that calculate the transformation F. 

 
For the discrete Fibonacci transformation: 
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For convenience, instead of   Nnn ,1=  we will consider the basic functions 
  Nnn ,15 = . 
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Fibonacci numbers   Nnn ,1=  is the nearest integer to the number 
5

n , where 

2
51+

= ; then you can write: 

 

( ) ( ) ( )( )




 ++

=







== 

+

=

+

= 2
21loglog5loglog

1

1

1

1

NNnF
N

n

N

n
n  , 

 
and so on: 
 

( )( )
( ) 










+
++

+ ++ 


 log
log12

21
N
NNLL  (17) 

 
Let + += LLC . It follows from (12) and (15) that with a direct transformation 

12,22 −=−= + NLNL , and with the reverse conversion NLNL 2,22 =−= + . Therefore, 
 

341
2

−+ NCN  

 
Property № 8. The Karunen-Loew transform and the Fibonacci transform. When solving 

our task of decrypting satellite images in order to monitor for the presence of household waste, we 
will use the Fibonacci transform (instead of the Karunen-Loew transform). The basis for such a 
decision is the following statement [Agaian, 1990; Agaian, Alaverdian, 1996]. 

Statement. Let Nf  — a random signal with a covariance matrix 
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( )110 ,,, −pttt   and ( )110 ,,, −pjjj   — binary representations of numbers t−1 and j−1. 
 

Then it’s fair (21): 
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( )nNNNNN diagФФK  ,,,, 21 ==  (21) 
 

Proof. The expression (17) is presented in the following form: 
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In matrix form, you can write this expression as (22): 
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where NH  — the Walsh-Hadamard matrix of order N. 
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This was exactly what needed to be proved. 

 
Property № 9. It is known that [Ivashko, 1983] the i-th Fibonacci number can be obtained 

as a solution to a linear difference equation: 
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Function ( ) iiy =1  — is an increasing exponent, and ( ) ( ) ( )iiiiy 618.012 −==   — 

alternating decaying sequence. 
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In [Ivashko, 1983] it is proved that 
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1 
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The lag, shift, and convolution theorems do not hold for the Fibonacci basis, but Parseval’s 

equality holds. 
Here is a mathematical formulation of the problem of information compression by means 

of the Fibonacci addition. Let’s consider the implementation of some random process with certain 
quantitative characteristics (mathematical expectation = 0, and covariance matrix x ) and we 
denote this vector of dimension N as follows — ( )10 ,, −= Nxxx  . 

We have a non-degenerate matrix of basic functions of some orthogonal system 
( )  0kk t , on the basis of which an orthogonal transformation is formed F (25): 
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

 (25) 

 
Let 

1−F  is a reverse conversion; 
S is the matrix of choice of rank m, where Nm 1  dimensions Nm ; 
W is the dimension recovery matrix mN  . 

The task is to choose 000 ,, WSF , satisfying the following conditions: 
 

( ) min, 1 →− xFSWFx . 
 

Here,  is the specified metric. 
Let’s present the algorithm of the problem in the form of the following flowchart (Fig. 2). 
The task is to find the optimal method of zone coding. If 0/ NNk =  is given, then such 

spectral components are replaced by zeros, in which the recovery error is minimized: 
 

( )


,
sup*

Xx
= . 

 
Consider the following set of vectors with real components (26): 

 

( )
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


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



−== −− kkkN xxxxxxX 1110 max:,,,   (26), 
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where nrN = , 
and the vector ( ) 1,,00,,0,,,,,0,,0 11 −== ++

nsyyyy sss rrrs   — is s-th pack of 

vector y. 
 

 
 

Fig. 2. The algorithm of the problem of finding the optimal method of zone coding  
in data compression by means of the Fibonacci transformation 

 
 

To determine the optimal method of zone encoding during compression using the Fibonacci 
transform, it is necessary to investigate the following extreme problem: extry j →  on condition 

 Xx , where 
 

( ) ( ) ( )110 110 −++= − Nxxxy jNjjj   ( )11 − Nj  

 
To solve this problem, it is necessary to use the principle of optimality in dynamic 

programming [Lezhnev, 2017]. The dynamic planning process will be carried out in the opposite 
direction, i. e. a decision will be made from the end to the beginning. 

Let (27) be the maximum task: 
 

max→jy  on condition  Xx , т. е. 1,1,1 −=−− Nkxx kk ,  
 

 is the original vector of 
data from the metric space  

Step I. Given the vector-signal , that undergoes a 
Fibonacci transformation: 

 

Step II. The vector of spectral components  is replaced 
by a smaller vector : 

 

Step III. The resulting vector  is augmented to 
dimension N and is transformed via . The original 
vector is restored with an error  
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where 
 

( ) ( ) ( )110 110 −++= − Nxxxy jNjjj   ( )11 − Nj  (27) 

 
Let 20 ˆ,,ˆ −Nxx   in task (28) be selected. Then the last step is to choose 1−Nx  provided 

that − −− 12 NN xx . Let us say: 

 
( )1ˆˆ 21 −+= −− Nsignxx jNN   (28) 

 
The solution of problem (28) after substitution (29) will have the form:  
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Now consider the following task (29): 

 
max→jy  with task  Xx , so 2,1,1 −=−− Nkxx kk  (29), 

 
where 
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N
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Let’s assume that 30 ˆ,,ˆ −Nxx   in the problem (30) are optimal, then: 

 
( ) ( ) 12ˆˆ 32 −+−+= −− NNsignxx jjNN  , 

and the solution of the problem (30) will look like: 
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Continuing this process, we have that with the optimal choice of components 

121 ˆ,,ˆ,ˆ −Nxxx  , satisfying the conditions of the problem (30), we will have: 
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According to the orthogonality of the matrix DTFb and the presence of rows consisting of 
identical non-zero elements, we have: 
 

( ) 1,1,0
1

0
−==

−

=

Nji
N

i
j  (31) 

 
Taking into account (32), we will have: 
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Considering task (30) as a minimum task, we get (33): 
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From (33) and (34) it follows for the Fibonacci matrix ( ) 1,0, −=

= Nijj iF  , and the 

DTFb, so 
( )TNyyyxFy 110 ,,, −==  , 

 
is right: 
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Using the ratio (35), we find the form of the matrix S for DTFb.  
Statement. Let the original data vector belong to the class of vectors with real components 

(26) and let F be a Fibonacci matrix of order N (25). Then, the following inequality holds (35): 
 

( )1058.2max −
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Ny jXx
( )11 − Nj  (35) 

 
Proof. According to (24), we have: 
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With 1− mi , ( )1max −=


Ny jXx

 
(37), 

With 1−=mi , ( )1058.2max −=


Ny jXx
 

 
This was exactly what needed to be proved. 
 



Дистанционные методы 
исследования Земли

521

Corollary 1. When increasing the value of j, the value of the spectrum y  (37) it will 
increase, i. e. it is a monotonously increasing function, therefore, when compressing, it is necessary 
to replace the initial components of the vector with zeros y . 

Corollary 2. By virtue of Parseval’s equality 
22 ll

yx =  the ratio (37) makes it 

possible to determine the maximum value of the DOT error using this additional. 
 
Experiments 

Soil degradation is a set of processes that lead to changes in soil functions, quantitative and 
qualitative changes in their properties, gradual deterioration and loss of fertility. The main cause 
of soil degradation is an anthropological factor: industrialization, urbanization, pollution with solid 
and liquid waste, poisoning of the soil with pesticides [Kazaryan et al., 2018 (a, b), 2019 (a, b)]. 

As an experimental part of the article, we investigate the problem of applying discrete 
orthogonal transformations using the example of the Fibonacci transformation for satellite images 
obtained from the artificial Earth satellite (ASE) Landsat, for aerospace monitoring of solid waste 
objects, so multispectral images are used, for example, obtained from Landsat-4–5 TM satellites 
for a given observation period (OP), usually at least 10 years. Data on the amount of precipitation 
in the study area for the same period. The images must be geo-linked, atmospherically adjusted 
and cloud-free. Used channels are 1–7 [Kazaryan et al., 2018 (a, b), 2019 (a, b)]. 

Let’s consider as one of the methods of processing multispectral images that allow us to 
improve the results of decryption, the method of applying orthogonal transformations, in 
particular, the Fibonacci transformation is considered.  

It is known that the bands of multispectral images very often turn out to be correlated 
[Shovengerdt, 2013]. The reason for this correlation may be:  

• correlation of spectral properties of objects (this is possible, for example, with low 
reflectivity of vegetation in the visible part of the spectrum);  

• topography (the level of shading due to topographic features can be considered the same 
in all ranges of registration of reflected solar radiation);  

• overlapping of registration ranges (ideally, this factor is excluded when developing a 
sensor, but in practice this is not always done). 
 
Such a correlation leads to the appearance of redundant information. The goal that we face 

is to try to get rid of it with minimal errors. First, let’s consider the representation of a satellite 
image using orthogonal transformations. Next, we will consider data compression or the selection 
of certain features, i. e. we will make the transition to a new basis for measurements in fixed 
spectral channels. 

It is known [Glumov, 1967; Chernov, 2013; Chernov, 2020] that an orthogonal trans-
formation, which, on the one hand, provides a representation of the signal, and on the other hand, is 
optimal in the sense of the RMS criterion. This is the Karunen-Loew transformation. Let’s consider 
how much more profitable it is to use other additional methods when decrypting satellite images. 

The transformation matrix of the orthogonal transformation under study is fixed for a given 
type of sensor and shooting system, therefore, for each new shooting system, it is necessary to 
calculate new additional coefficients using the principal component method. 

Let’s consider the essence of the proposed method. The physical justification for it is as 
follows. In multispectral shooting systems, the image is formed in accordance with the reflection 
of electromagnetic energy from objects in narrow spectral zones. 

The image in certain channels captures the reflection of the spectral brightness of the source 
object in a given range of the electromagnetic spectrum, i.e., the energy reflected from the surface 
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is measured by the camera system and recorded as the brightness of the corresponding image 
element.  

The multispectral image is represented as a matrix (38): 
 

 
(38) 

 
and contain the k images P(k), each of which represents the brightness values measured in 

narrow spectral zones (k is the number of channels of the shooting system). Vector 
 contains the brightness values of the elements  in each channel of the 

filming system [Kazaryan et al., 2018 (a, b), 2019 (a, b)]. 
For different objects, the spectral luminances in different ranges of the electromagnetic 

spectrum, although different, are strongly correlated. Measurements in narrow spectral zones 
(channels) performed by a multispectral survey system do not eliminate correlation dependence. 
Thus, the measurement system does not form an orthogonal basis. Orthogonal transformations 
carry out the transition from the measurement space of spectral brightness of objects to the space 
of features associated with the properties of a given class of objects. 

So, the experiment consists of performing two steps: the first is to apply an orthogonal 
transformation to the original image, which will make it possible to decorrelate the component 
vectors of the image and reduce the dimension of the image; the second is to build a trainable 
classifier to perform the task of pattern recognition. 

Let’s consider the implementation of the first part, namely, the selection of features. 
The type of object that is subject to changes in the presence of solid household waste is 

considered: clean soil, i. e. we are interested in the sign of brightness. 
The purpose of experimental studies is to evaluate the accuracy of soil decryption based on 

comparing the results of visual decryption from the original image and the image obtained using 
the DOT, as well as on the basis of comparing the results of classification without training using 
the K-MEANS algorithm from the original image, from an image with an orthogonal 
transformation.  

After segmenting the selected SI, we define homogeneous clusters. 
The further numerical algorithm is defined as follows. Let the initial matrix Х of brightness 

of dimension N * N is the realization of some random process with certain properties. Let’s 
entertain the following notation: 

• F — is a discrete orthogonal Fibonacci transformation; 
•  — is the value of the deviation of the original signal; 
• F−1 — reverse conversion; 
• k — is the compression ratio;  
• S — is a matrix of choice of dimension m * N of rank m, 1 <= m <= N 

 
Description of the Algorithm 

Let’s convert the digital image “Х” to the spectral region “Y” as follows: Y = FX, where F 
is a discrete orthogonal Fibonacci transformation. Even if we consider the input signal to be set 
exactly, then the vector Y̅ = SFX to be further processed is distorted. As a result of these actions, 
the original vector is restored with errors: 
 

ε1 = ρl2 (X, F−1STSFX ) (39), 
 
where l2 — is the standard metric. 
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Using the example of individual transformations, we will evaluate the possibility of using 
an additional one in the task of recognizing open-type debris areas from satellite images X. To do 
this, for this type of transformation, we will find the matrices SFFW 1−= , at which the minimum 
deviation value is reached for a given class of objects (littering areas) ),( CWX = , where F−1 — 
is the inverse matrix DOT (in particular, it can be an inverse or pseudo-inverse matrix), 
X = f−1(Y) = F−1Y, S — the matrix of class selection, C — the matrix of selection of reference 
areas occupied by known MSW in the field of observation,   — some norm. 
 
RESEARCH RESULTS AND DISCUSSION 
The regression analysis method 

Let’s find the matrix W for the halftone image X using the standard deviation method: 
 

CWXaAa mnij
ji

ij −==→=  *
,

2 ][min,
2
1  (40), 

 
W is not tied to any type of OT and sets some affine transformation of the original matrix X into 
the desired matrix C — a binary image of the selection of the test area (element values: 1 — area, 
0 — background). For a given image X of size n × m, the W operator is unique and restores the 
area C with a given accuracy D. 

Criterion (40) is transformed into a system of equations: 
 


=

==

 m

k
jkik

ij

xa
a 1

0
 (41) 

mjnicxwxwxwa ijnjinjijiij ...1,...1,...2211 ==−+++=   

mnijnnijmnij cCwWxX *** ][,][,][ ===   
 
As a result of solving a system of linear algebraic equations (41) from mn equations, we find: 

 

( ) 1

*1*
)(,,)( 2

−==




 = T

n

T

nnn

T XXBBIDXCDW  (42), 

 

where  and  — operations of Kronecker and ordinary matrix products, 

mn
A

*  — the operation of transforming the size of the matrix A to size n = m (when moving 
through the elements in the column directions, starting from the first element), 
In — a unit matrix of size n.  

Matrix of class area allocation according to its standard: E = WX. 
 
Discussion of the results of the regression analysis method 

Let’s look at the example of specific images of the result of the experiment. 
Fig. 3 shows an example of the transformation and restoration of the reference area (MSW 

Kuchino polygon, August 2011). From the figure it can be seen that for the “native” image X, the 
matrix E = C, and for another X', close in date to the shooting from X – CE ' . 
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(а) (b) (c) 

 

   
(d) (e) (f) 

 

     
(g) 

 
Fig. 3. a) the original image X (n = m = 64); b) the reference C (identical to the matrix E);  

c) matrix B; d) the unit matrix In; e) the Kronecker product D (diagonal blocks — matrix B);  
f) matrix W; g) matrix E' for another image X' ( EE ' ) 

 
It is clear that the more input images {Xk} are taken over a wider observation period T and 

the more channels {Xlk}, the more accurate the selection of the object on which the standard is 
built. Then, plus, the more reference areas {Cp}, the more accurate the selection is not only of all 
objects on which the corresponding ones are built standards, but also within the limits of the very 
class of these objects. 

More generally, the input matrices X and C: can be obtained through the Kronecker 
product: 

 

 p
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where J n  m — matrix of units of size n  m, k — the number of images covering the observation 
area U during the observation period T, l is the number of channels, p is the number of standards 
lying on the area U. Xlk and C p — matrices of size nm × 1 (transformation from matrices of size 
n × m).  
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Coefficient matrix (the operation of constructing a block diagonal matrix W from the main 
diagonal w): 
 

 k
k

n WWWw

W

W
W

wIW ...,
...

21
2

1

=



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where W — the desired matrix of nmlk × nmlk size coefficients describing this class of objects; 
Wk are matrices of nml × mnl size coefficients obtained for the k-th snapshot.  

Block-diagonal matrix WXeIE n == , where e = [E1 E2 … Ek] will have a size of 
mnlk × 1. If the OT is not carried out on all channels, but on each separately: 
 

lk
m

lkk
l

kk
l

k wIWeIEwIW === ,, ,  lkkkk WWWw ...21= , 

 lkkkk EEEe ...21= ,  lklklklk WWWw '...''= . 
 
W'lk — coefficient matrices of size n × n obtained on the l-th channel of the k-th image using the 

model (42) for mn

lk
p XJX

**1 =  and C = C' (for the “final” OT).  

Each Wk matrix identifies a class on a specific day of shooting (chronological, seasonal), 
detection image: Ek = WkXk. 

 
The Karunen-Loew transformation 

The Karunen-Loew transformation (principal component method) consists in the transition 
from a system of k old variables (factors) to a system of k' < k new variables (principal 
components). The original image X, consisting of channels {Xl}, l = 1…k, converted to an image 
Y, converted to an image {Yl}, l = 1…k'. 

To do this, an OT: 
 

   TkT
k XXXXvvvvvXY '...''',...,'' 21

21 === , 

 
where vl — the eigenvectors of the matrix C = [cij] of size k × k (the dimensions of the vectors are 
k × 1), arranged in descending order of eigenvalues dl;  
cij — the correlation coefficient between the above factors X'i and X'j. 
 

i

i
i

i

s
mX

X
−

=
''' , 

 
where mi and si — mathematical expectation and standard deviation of the sample X''i; 
X''i — vector columns of dimensions nm × 1 obtained by transformation from matrices Xi of 
dimensions n × m.  
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From the matrix Y' = [Y'1 Y'2 … Y'k] the first k' < k columns are selected — a matrix of the 
main components is obtained Y = [Y'1 Y'2 … Y'k']. Usually, k' = 1…4. 

 
Discussion of the results of the Karunen-Loew transformation 

Fig. 4 shows an example of constructing the main components for a multispectral image of 
the observation area (Balashikha district, Zheleznodorozhny island, August 2011). Despite the fact 
that the most significant components are 1–3, the best selection of areas of debris and open soil 
highlighted in dark blue (d) is given by combination 1 (on the red channel), 2 (on the green 
channel) and 6 (on the blue channel) main components. 

 

 
(а) 

 

 

 
 
 

(b) 
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(c) 

 

 
(d) 

 
Fig. 4. Application of the principal component method in the problem of recognizing  

areas of debris: a) the original image X (canals Xl); b) main components Y'l;  
c) combination of the main components; d) the best combination ([1 2 6] canals).  

The transformation operator v is calculated for each image X, i. e. there is no “universal”  
transformation. In the output composite images, the color of the litter selection  

may be different, but it differs from the background 
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The transformation operator v is calculated for each image X, i. e. there is no “universal” 
transformation. In the output composite images, the color of the litter selection may be different, 
but it differs from the background. 
 
Fibonacci transformation 

The Fibonacci transformation in matrix form can be written as (43): 
 

YFXFXY 1, −==  (43), 
 
where X and Y — are matrices of a halftone image of size n  n in brightness and frequency space; 
F and F−1 — are linear operators of size n × n of the forward and reverse Fibonacci 
transformations for the corresponding images X and Y. 

The matrix X is obtained by changing the size of the original matrix X with m m before 
n  n, where n = 2N, N = 1, 2…, that is, a change in spatial resolution. To do this, the functional is 
interpolated z = X(x,y), set by a grid of values x = 1…m, y = 1…m with a step h = 1 (m values 
along the abscissa and ordinate axes), in the functional z = X(x,y), set by a grid of values x = 1…m, 
y = 1…m with a step h = (m−1) / n (n values along the abscissa and ordinate axes). 

The compression of the Y matrix is provided by the compression matrix (selection matrix) 
(44): 
 

 )'(*1'*1, nnnn OJssIS −==  (44), 
 
where On * m — a matrix of size zeros n  m, n' = n / K, where K = 2N' — compression ratio of a 
two-dimensional signal, N' < N, N' = 1, 2… 

The effect of the operator S on Y, acting as a low-pass filter (from 1 to n'), leads to another 
direct conversion result: SFXY =' . As a result of the reverse conversion F'−1 matrix Y' signal 

''' 1YFX −=  is restored with precision (45): 
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−==
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ijijl xx
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221 )'(1)',(  (45), 

 
where l2 — the standard deviation of the difference matrix D = X − X', X = [xij]n*n; 
X' = [x'ij]n*n, ε1 — error in restoring a two-dimensional signal as a result of DOT. 

Let’s evaluate the recovery errors 11,    for Fibonacci conversion at different compression 
ratios j = N' and on different channels i of the original image X of the littering area (Kuchino 
landfill, August 2011). We believe N = 10, α = 10−4. 

 
Discussion of the results of the Fibonacci transformation 

Fig. 5 shows the matrices E1 = [ε1(i,j)], E2 = [ε2(i,j)], E'1 = [ε'1(i,j)], E'2 = [ε'2(i,j)], of 
sizes l  (N − 1). We see that the maximum accuracy is observed on the 6-th (thermal) channel 
and it changes slightly during compression. Matrices 11 'EE  . 

Fig. 6 shows an example of signal recovery at N' = N / 2 = 5. It can be seen from Fig. 6e 
that an increase in spatial resolution and a decrease in the compression ratio have little effect on 
the recovery result. In other words, the image of littering can be restored both while maintaining 
and even reducing the spatial resolution, and with its strong compression. This is due to the fact 
that the littering texture is characterized by a random, random spatial distribution of pixel 
brightness. 
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Fig. 5. Recovery errors: 1) ε1; 2) ε'1; a) on different channels  

and at different compression ratios; b) matrices 
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Fig. 6. An example of the Fibonacci transformation of a littering image:  
a) the original images (with an increase in spatial resolution, N = 10);  

b) the Fibonacci transformation with compression (N' = 5);  
c) the composites of transformations (combining different channels, N = 8, N' = 2);  

d) the best transformation (combination [3 5 7]);  
e) examples of images (1 — N = 8, N' = 2; 2 — N = 10, N' = 3) 

 
CONCLUSIONS 

The paper provides a detailed mathematical study of Fibonacci transformations. A state-
ment related to the Karunen-Loew transformation and a theorem are proved, in which the type of 
the selection matrix S is specified when performing compression by means of zone coding using 
a discrete Fibonacci transformation. 

An experiment is being conducted, which is carried out in two stages. The first stage is the 
application of a DOT onto the original image to perform image decorrelation and decrease the 
dimension of the original image accordingly. The second stage consists in the formation of a 
trained classifier for decrypting the image. 

These studies find application in conducting space monitoring of the Earth using a remote 
sensing device to prevent environmental and emergency situations on a global scale. 
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