Creating virtual models of Arhyz region

DOI: 10.35595/2414-9179-2024-1-30-280-294

View or download the article (Rus)

About the Authors

Ilya A. Rylskiy

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: rilskiy@mail.ru

Dmitriy A. Paramonov

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: paramonovwork@mail.ru

Anna Yu. Kozhukhar

Lomonosov Moscow State University, Faculty of Geography,
1, Leninskie Gory, Moscow, 119991, Russia,
E-mail: ann3105880@yandex.ru

Roman V. Gruzdev

Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy of Sciences,
16a, Nedorezova str., Chita, 672002, Russia,
E-mail: rogruzdev@mail.ru

Abstract

Designing mountain tourism clusters requires a significant amount of effort from different specialists from different organizations and regions. The free exchange of high-precision data can be difficult; the data itself, as a rule, cannot be obtained from funds, which requires high-precision surveys using the latest technologies. The paper describes an approach to providing information to diverse specialists with high-precision information, through surveying using the airborne laser scanning method, digital aerial photography. Information support is achieved by cartographic products derived from these materials, including a virtual model with closed spatial data. In addition to the use of open data for less important regions, the work separately examines aspects of surveying in different seasons and the opportunities that this approach provides (calculation of the depth layer of snow cover, the ability to decipher hazardous processes associated with snow). An approach to filling virtual models not only with traditional two-dimensional and three-dimensional cartographic materials, but also with points of laser reflections from above-ground objects is also described. This approach not only improves the visual quality of the 3D model rendering, providing a high level of realism, but also allows users to make accurate measurements based on the original survey information. The paper discusses approaches to optimizing data storage and visualization, allowing you to work with a large amount of spatial information without the use of specialized computers. Various approaches to visualizing laser reflection points in model space are considered.

Keywords

airborne imagery, virtual model, remote sensing, GIS, LIDAR

References

  1. Allen P.K., Stamos I., Troccoli A.A., Smith B., Leordeanu M., Hsu Y. 3D modeling of historic sites using range and image data. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, 2003. V. 1. P. 145–150.
  2. Chen Q. Airborne lidar data processing and information extraction. Photogrammetric Engineering & Remote Sensing, 2007. V. 73. No. 2. P. 109–112.
  3. Gorgens E., Valbuena R., Rodriguez L. A method for optimizing height threshold when computing airborne laser scanning metrics. Photogrammetric Engineering & Remote Sensing, 2017. V. 1. P. 343–350. DOI: 10.14358/PERS.83.5.343.
  4. Haala N., Brenner C., Anders K.-H. 3D urban GIS from laser altimeter and 2D map data. International Archives of Photogrammetry and Remote Sensing, 1998. P. 339–346.
  5. Kapralov E.G., Koshkarev A.V., Tikunov V.S., Fundamentals of geoinformatics. M.: Akademia (Academy), 2004. P. 480.
  6. Korpela I. Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment, 2008. P. 3891–3897.
  7. Lohr U. Digital elevation models by laserscanning: Principle and applications. III International Airborne Remote Sensing Conference and Exhibition, 1997. P. 174–180.
  8. Mukul M., Srivastava V., Jade S., Mukul M. Uncertanties in the Shuttle Radar Topographic Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Scientific Reports, 2017. P. 1–10.
  9. Rylskiy I.A., Paramonov D.A., Kozhukhar A.Y., Terskaia A.I. Creation of virtual model of the area of Big Sochy–Krasnaia Polyana–Lagonaki plateau. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 589–606 (in Russian). DOI: 10.35595/2414-9179-2023-1-29-589-606.
  10. Rylskiy I.A., Terskaia A.I., Kozhukhar A.Y. Creation of virtual model of the area of Big Sochy–Krasnaia Polyana–Lagonaki plateau. InterCarto. InterGIS, 2022. No. 28. P. 540–555.
  11. Schwalbe E., Maas H., Seidel F. 3D building model generation from airborne laser scanner data using 2D GIS data and orthogonal point cloud projections. Proceedings of the International Society for Photogrammetry and Remote Sensing, 2005. P. 12–14.
  12. Tikunov V.S., Rylskiy I.A. Approaches to determination of snow coverage thickness using LIDAR. Geodesy and Cartography, 2020. No. 8. P. 28–41. DOI: 10. 22389/0016-7126-2020-962-8-38-48.
  13. Zhang C., Chen T. Efficient feature extraction for 2D/3D objects in mesh representation. Proceedings of the 2001 International Conference on Image Processing, 2001. P. 935–938.

For citation: Rylskiy I.A., Paramonov D.A., Kozhukhar A.Yu., Gruzdev R.V. Creating virtual models of Arhyz region. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2024. V. 30. Part 1. P. 280–294. DOI: 10.35595/2414-9179-2024-1-30-280-294 (in Russian)