Possibility of using multiple dwellings data from territorial development fund data for the study of metropolitan areas

DOI: 10.35595/2414-9179-2023-2-29-407-422

View or download the article (Rus)

About the Authors

Ilia A. Logvinov

St. Petersburg State University, Institute of Earth Sciences,
7/9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: ilia.logwinov@yandex.ru

Stanislav S. Lachininskii

St. Petersburg State University, Institute of Earth Sciences,
7/9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: lachininsky@gmail.com

Abstract

The continued rapid growth of metropolitan areas is being actively studied by urban researchers in different branches of science. The modern development of information technology has boosted the arsenal of available data and tools for researchers. One of these types of data are multiple dwellings data in Russia today, provided through the open data from Territorial Development Fund. Scientists from different areas of science actively use them, but their features are poorly covered precisely as spatial data and the possibilities for their application. The authors analyzed the possibilities and limitations of using such data to study metropolitan areas (on the materials of the St. Petersburg metropolitan area). The process used by the authors for obtaining spatial data and visualization options, including quantitative analysis, were described. The possibilities of visualization are demonstrated considering the ignoring of the administrative divisions and the analysis of spatial autocorrelation. The key features of the data are the ability to ignore the administrative divisions and the expansion of the time series for research. At the same time, indicated errors in the data, which in general should slightly distort the true picture of the housing stock differentiation. This is expressed in the low actual update efficiency from 2020 and the absence of about 10–20 % of attributive data. An important limitation of the data is the lack of information on individual housing construction. The impact of identified problems can be reduced by integrating with other types of data. An important feature of the data is the presence of an address in accordance with the federal address information system (FIAS), which allows for accurate geo-referencing of data on multiple dwellings, but with limitations associated with the shortcomings of FIAS. Based on the analysis of the experience of predecessors and the own experience of the study, options for using data are proposed, in particular, population density modeling, identification of urban morphotypes, visualization and quantitative analysis of changes in the spatial structure of metropolitan areas. This study is one of the first to analyze the data on multiple dwellings as a type of spatial data and possible directions of GIS-analysis.

Keywords

metropolitan area, housing construction, GIS, territorial development fund data

References

  1. Babkin R.A. Experience of using the data of cellular operators in foreign economic and geographical studies. Vestnik of Saint-Petersburg University. Earth Sciences, 2021. V. 66. No. 3. P. 416–439 (in Russian). DOI: 10.21638/spbu07.2021.301.
  2. Baryshkin P.A., Alekseenko N.A. Studying the structure of housing stock of mining mono-cities with the help of a cartographic method (by the example of Kimovsk and Kirovsk). Scientific researches of young cartographers, performed under the guidance of the staff of the Department of Cartography and Geoinformatics of the Geographical Faculty of Lomonosov Moscow State University. Moscow: KDU, Dobrosvet, 2022. P. 3–12 (in Russian).
  3. Golovin A.V., Gudz’ T.V., Vitkov G.V., Karasel’nikova I.V., Kosolapov N.A. Sprawl Planning. Spatial Policy of Russian Cities. Moscow: Publishing House of the HSE (Publishing House of the Higher School of Economics), 2021. 248 p. (in Russian). DOI: 10.17323/978-5-7598-2578-4.
  4. Kosareva N.B., Polidi T.D., Puzanov A.S. Economic urbanization. Moscow: Institute for Urban Economics Foundation, 2018. 418 p.
  5. Kurichev N.K., Kuricheva E.K. The spatial structure of housing construction in the Moscow agglomeration: radial-sectoral differentiation. Vestnik of Saint-Petersburg University. Earth Sciences, 2020. V. 65. No. 1. P. 74–95 (in Russian). DOI: 10.21638/spbu07.2020.105.
  6. Kuricheva E.K. Housing construction in the Moscow agglomeration: spatial implications. Moscow University Bulletin. Series 5: Geography, 2017. No. 3. P. 87–90 (in Russian).
  7. Lachininskij S.S., Sorokin I.S. Spatial structure and development of settlements in the Saint Petersburg agglomeration. Baltic Region, 2021. V. 13. No. 1. P. 48–69 (in Russian). DOI: 10.5922/2079-8555-2021-1-3.
  8. Lappo G.M. Cities and paths to the future. Moscow: Mysl’, 1987. 236 p. (in Russian).
  9. Li X., He H.S., Xiu C., Li B., Shendrik A. Twenty years of post-Soviet Union urban land use change of St. Petersburg. Applied Spatial Analysis and Policy, 2020. No. 13 (4). P. 1019–1033. DOI: 10.1007/s12061-020-09340-9.
  10. Li C., Li J., Wu J. What drives urban growth in China? A multi-scale comparative analysis. Applied geography, 2018. V. 98. P. 43–51. DOI: 10.1016/j.apgeog.2018.07.002.
  11. Lymar’ V.V., Karpov A.S., Krasnova O.A. Application of parametric methods for mapping the morphology of urban development on the example of Vasileostrovsky district of St. Petersburg. Urbanistics, 2021. No. 1. P. 34–55 (in Russian). DOI: 10.7256/2310-8673.2021.1.35029.
  12. Makhrova A.G., Babkin R.A. Cities of the Moscow metropolitan area: official and real. Regional Studies, 2022. No. 1. P. 4–16 (in Russian). DOI: 10.5922/1994-5280-2022-1-1.
  13. Makhrova A.G., Babkin R.A., Kazakov E.E. Dynamics of day and night population as an indicator of structural and functional changes in the city territory in the zone of influence of the Moscow Central Ring using data from cellular operators. Outlines of global transformations: politics, economics, law, 2020. V. 13. No. 1. P. 159–179 (in Russian). DOI: 10.23932/2542-0240-2020-13-1-9.
  14. Markova O.I., Tikunov V.S. New technologies for modern geoinformatics InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 1. P. 5–34 (in Russian). DOI: 10.35595/2414-9179-2022-1-28-5-34.
  15. Moreno-Monroy A.I., Schiavina M., Veneri P. Metropolitan areas in the world. Delineation and population trends. Journal of Urban Economics, 2020. P. 22. DOI: 10.1016/j.jue.2020.103242.
  16. Obukhov L.A., Panidi E.A. Toward correctness control of postal addresses geocoding InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 114–127 (in Russian). DOI: 10.35595/2414-9179-2021-2-27-114-127.
  17. OECD. Cities in the World: A New Perspective on Urbanization. Paris: Urban Studies, 2020. 171 p. DOI: 10.1787/b261814f-en.
  18. Pirowski T., Bartoš K. Detailed mapping of the distribution of a city population based on information from the national database on buildings. Geodetski Vestnik, 2018. No. 62. P. 458–471.
  19. Taylor P.J., Derudder B., Faulconbridge J., Hoyler M., Ni P. Advanced producer service firms as strategic networks, global cities as strategic places. Economic geography, 2014. No. 90 (3). P. 267–291. DOI: 10.1111/ecge.12040.

For citation: Logvinov I.A., Lachininskii S.S. Possibility of using multiple dwellings data from territorial development fund data for the study of metropolitan areas. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 2. P. 407–422. DOI: 10.35595/2414-9179-2023-2-29-407-422 (in Russian)