Regional metageosystem management based on risk identification, analysis and monitoring

DOI: 10.35595/2414-9179-2023-1-29-123-142

View or download the article (Rus)

About the Authors

Anatoly A. Yamashkin

National Research Mordovia State University, Institute of Geoinformation Technologies and Geography,
68, Bolshevistskaya str., Saransk, 430005, Russia,
E-mail: yamashkin56@mail.ru

Stanislav A. Yamashkin

National Research Mordovia State University, Institute of Electronics and Lighting Engineering,
68, Bolshevistskaya str., Saransk, 430005, Russia,
E-mail: yamashkinsa@mail.ru

Abstract

The article presents a solution to the problem of introducing spatial data infrastructures (SDI) and geoportal systems as a tool for solving the problem of integration, distribution and visualization of geospatial information. The role of geoportals is proved as a tool to support managerial decision-making in the field of ensuring the conditions for sustainable development. It is proposed to organize the SDI implementation process on the basis of identification, analysis and monitoring of risks. The risk management process can be integrated into the process of iterative implementation and use of the SDI as an input to the requirements analysis stage. The results of assessing the strength of risk events make it possible to form a set of controllable risks in the management of territorial systems. In this case, the results of the risk assessment stage become the starting point in solving the problem of designing functional and qualitative requirements for the infrastructure of spatial data as a tool for managing spatially distributed systems. The solution of the problem of optimizing the processes of using spatial data for solving management problems should be focused on achieving the target effects of SDI, while assessing and controlling the resource intensity and complexity of management processes. It is shown that an important feature of the approach is the focus on flexible organization of the process of developing geoinformation systems. The solution to the problem of effective iterative development of SDI is possible based on the observance of the SOLID principles, which determine the expediency of implementing the basic principles of object-oriented programming and design.

Keywords

metageosystems, natural-social-production systems, risk management, sustainable development, geographic information systems

References

  1. Al-Saqqa S., Sawalha S., AbdelNabi H. Agile software development: Methodologies and trends. International Journal of Interactive Mobile Technologies, 2020. V. 14. No. 11. DOI: 10.3991/ijim.v14i11.13269.
  2. Aniche M., Yoder J., Kon F. Current challenges in practical object-oriented software design. 2019 IEEE ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), 2019. P. 113–116.
  3. Artobolevsky S.S., Baburin V.L., Baklanov P.Ya., Kasimov N.S., Kolosov V.A., Kotlyakov V.M., Lyuri D.I., Tishkov A.A. Spatial development strategies in the Russian Federation: Geographical resources and constraints. Izvestia RAN. Seriya Geograficheskaya (News of the Russian Academy of Sciences. Geographical series), 2009. No. 3. P. 8–17 (in Russian).
  4. Cherkashin A.K. Metatheoretical system modeling of natural and social processes and phenomena in a heterogeneous environment. Information and Mathematical Technologies in Science and Management, 2019. No. 1 (13). P. 61–84 (in Russian). DOI: 10.25729/2413-0133-2019-1-06.
  5. Faraji A., Rashidi M., Perera S., Samali B. Applicability-compatibility analysis of PMBOK seventh edition from the perspective of the construction industry distinctive peculiarities. Buildings, 2022. V. 12. No. 210.
  6. Gkonos C., Iosifescu Enescu I., Hurni L. Spinning the wheel of design: Evaluating geoportal Graphical User Interface adaptations in terms of human-centred design. International Journal of Cartography, 2019. V. 5. No. 1. P. 23–43. DOI: 10.1080/23729333.2018.1468726.
  7. Happe A., Duncan B., Bratterud A. Unikernels for cloud architectures: How single responsibility can reduce complexity, thus improving enterprise cloud security. COMPLEXIS, 2017. P. 30–41.
  8. Heaton J., Datta A., Finley A.O. A case study competition among methods for analyzing large spatial data. Journal of Agricultural, Biological and Environmental Statistics, 2019. V. 24. No. 3. P. 398–425. DOI: 10.1007/s13253-018-00348-w.
  9. Lee J., Kang M. Geospatial Big Data: Challenges and opportunities. Big Data Research, 2017. V. 2. No. 2. P. 74–81. DOI: 10.1016/j.bdr.2015.01.003.
  10. Nikolaev V.A. Classification and small-scale mapping of landscapes. Moscow: Moscow University Press, 1978. 62 p. (in Russian).
  11. Räsänen A., Lein H., Bird D., Setten G. Conceptualizing community in disaster risk management. International Journal of Disaster Risk Reduction, 2020. V. 45. Art. 101485. DOI: 10.1016/j.ijdrr.2020.101485.
  12. Tikunov V.S., Kotova T.V., Belousov S.K. Ecological state: Definition, indicators, mapping. InterCarto. InterGIS, 2021. V. 27. Part 1. P. 165–194 (in Russian). DOI: 10.35595/2414-9179-2021-1-27-165-194.
  13. Yamashkin S.A., Yamashkin A.A., Zanozin V.V., Radovanovic M.M., Barmin A.N. Improving the efficiency of deep learning methods in remote sensing data analysis: geosystem approach. IEEE Access, 2020. V. 8. P. 179516–179529. DOI: 10.1109/ACCESS.202 0.3028030.

For citation: Yamashkin A.A., Yamashkin S.A. Regional metageosystem management based on risk identification, analysis and monitoring. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2023. V. 29. Part 1. P. 123–142. DOI: 10.35595/2414-9179-2023-1-29-123-142 (in Russian)