The concept and some results of the development of an operational assessment tool, relief changes in landslide-prone, prone to collapse and beaches

DOI: 10.35595/2414-9179-2022-2-28-632-643

View or download the article (Rus)

About the Authors

Vyacheslav V. Dolotov

FRC Marine Hydrophysical Institute RAN,
Kapitanskaya str., 2, 299011, Sevastopol, Russia;
E-mail: vdolotov@mail.ru

Andrey V. Dolotov

FRC Marine Hydrophysical Institute RAN,
Kapitanskaya str., 2, 299011, Sevastopol, Russia;
E-mail: dolotov_a_v@mhi-ras.ru

Abstract

The paper describes the concept of building a specialized geoinformation tool designed for automated execution of a number of operations related to the implementation of calculations to assess changes in the relief of individual sections of the coastal zone of the sea. The tool is used for monitoring areas with low stability, prone to landslide and landslide processes, as well as beaches with a quantitative assessment of their spatially distributed volume changes. The initial data for calculations are arrays generated by the program for processing aerial photographs obtained with drones in photogrammetry mode. The algorithmic basis of the tool is the well-known geoinformation tool named Cut & Fill, used in conjunction with a database on the location and geometry of a large number of sections of the western coast of Crimea. The sequence of operations involves sampling from two or more arrays of points according to a given spatial location, performing vertical alignment with use the number of ground control points, performing interpolation into a regular grid of the size accepted for each section, calculations and presenting the results in tabular and graphical form. All the results obtained are saved for reuse and, in addition, their graphical analysis for spatial and vertical alignment is possible. It is also possible to build vertical sections on any row or column of a regular grid. Practical testing of the instrument was performed for three surveys of a landslide-prone area in the area of Tolstoy Cape a year before the catastrophic landslide on 18.01.2019, immediately after the event and in 2021 as a result of monitoring program. The operational assessment showed that all operations for performing calculations on two grids were performed within one hour after the survey with detailed and reliable results.

Keywords

cartography, GIS, Crimea, coastal zone, automated operations, terrain modeling, photogrammetry

References

  1. Bagrova L.A., Bokov V.A., Bagrov N.V. Crimea Geography. Kiev: Lybid, 2001. 304 p. (in Russian).
  2. Burdziakowski P. Evaluation of open drone map toolkit for geodetic grade aerial drone mapping—case study. 17-th International a Multidisciplinary Scientific Geoconference SGEM, 2017. 2017. P. 101–110.
  3. Calina J., Calina A., Badescu G., Croitoru A.C., Vangu G.M. Research on Realizing Thematic Digital Maps Using Drone Assisted Scanning Technology. 18th International Multidisciplinary Scientific Geoconference SGEM, 2018. 2018. P. 369–376.
  4. Dolotov V.V., Shklyar A.A. A volumetric method for estimating the temporal dynamics of the state of beaches. International Conference InterCarto. InterGIS 21, 16–19 Nov. 2015. Krasnodar, 2015. P. 416–419 (in Russian).
  5. Gafurov A.M. The possibility of using an unmanned aerial vehicle to assess soil and gully erosion. Scientific notes of Kazan University. Series: Natural Sciences. 2017. Vol. 159. No. 4. P. 654–667 (in Russian).
  6. Goryachkin Yu.N., Dolotov V.V. Sea Coasts of Crimea. Sevastopol: Colorit, 2019. 256 p. (in Russian).
  7. Krylenko M., Krylenko V. Methodological Features of Aerial Survey of Coast Relief by UAV. Proceedings of SPIE—The International Society for Optical Engineering. 8. Sep. Eighth International Conference on Remote Sensing and Geoinformation of the Environment, RSCy 2020. 2020. P. 115241W.
  8. Krylenko V.V., Rudnev V.I. Aerial photography technique of the Bakal spit. Environmental safety of the coastal and offshore zone of the sea. 2018. No. 4. P. 59–64 (in Russian).
  9. Longinov V.V. Dynamics of the coastal zone of tidal seas. Moscow: Academy of Science of USSR, 1963. 379 p. (in Russian).
  10. Miřijovský Ja., Brus Ja., Pechanec V. Utilization of a Small-Format Aerial Photography from Drone Pixy Concept in the Evaluation of the Landscape Changes. 11th International Multidisciplinary Scientific Geoconference SGEM, 2011, 2011. P. 345–354.
  11. Müller D., Walter T.R., Witt T., Steinke B., Schöpa A., Gudmundsson M.T., Dürig T. High Resolution Digital Elevation Modelling from TLS and UAV Campaign Reveals Structural Complexity at the 2014/2015. Holuhraun Eruption Site, Iceland. Frontiers in Earth Science. 2017. Vol. 5. P. 59.
  12. Pankeeva T.V., Mirovova N.V., Novikov B.A. Mapping of bottom vegetation of Kruglaya Bay (Sevastopol, Black Sea). Environmental safety of the coastal and offshore zone of the sea. 2019. No. 3. P. 61–71 (in Russian).
  13. Peshkov V.M. Coastal zone of the sea. Krasnodar: Lakont, 2003. 350 p. (in Russian).
  14. Romanuk O.S. The genesis of the Crimean beaches. Geology of the coast and bottom of the Black and Azov Seas within Ukraine. 1967. Vol. 1. P. 178–182 (in Russian).
  15. Silaev A.V. Investigation of the possibility of using Earth remote sensing materials together with data obtained from unmanned aerial vehicles. The use of unmanned aerial vehicles in geographical research. Materials of the All-Russian Scientific and Practical Conference. 2018. P. 112–114 (in Russian).
  16. Steshin I.S. Technology for creating a three-dimensional terrain model based on remote sensing data from an unmanned aerial vehicle in the service Maps Made Easy. Scientific Review. International Scientific and Practical Journal. 2017. No. 1. P. 12 (in Russian).
  17. Shuysky Yu.D., Vychovanets G.V., Karasyov L.M., Makeev I.A. Morphology and dynamics of the shores of the southwestern part of the Crimean Peninsula. Physical geography and geomorphology, 1984. Vol. 31. P. 83–88 (in Russian).
  18. Shuysky Yu.D. Problems of sediment balance research in the coastal zone of the seas. Leningrad: Hydrometeoizdat, 1986. 240 p. (in Russian).
  19. Subhan Hartanto, Mhd. Furqan, Andysah Putera Utama Siahaan, Wirda Fitriani Haversine Method in Looking for the Nearest Masjid. International Journal of Recent Trends in Engineering and Research. 2017. Vol. 3. Iss. 8. P. 186–195. DOI: 10.23883/IJRTER.2017.3402.PD61H.
  20. Ukrainian Shelf Geology: Nature. History and methods of study. Kiev: Naukova Dumka, 1982. 175 p. (in Russian).
  21. Zenkovitch V.P. Morphology and dynamics of the Soviet shores of the Black Sea. Vol. 1. Moscow: Academy of Science of USSR, 1960. 216 p. (in Russian).
  22. Zenkovitch V.P. Fundamentals of the doctrine of the development of seashores. Moscow: Academy of Science of USSR, 1962. 278 p. (in Russian).

For citation: Dolotov V.V., Dolotov A.V. The concept and some results of the development of an operational assessment tool, relief changes in landslide-prone, prone to collapse and beaches. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 632–643. DOI: 10.35595/2414-9179-2022-2-28-632-643 (in Russian)