Integration of geographic information systems into in-use medical information systems, data flow management

DOI: 10.35595/2414-9179-2022-2-28-261-275

View or download the article (Rus)

About the Authors

Ilia S. Kuznetsov

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
10th Line V.O., 33–35, 197761, St. Petersburg, Russia;

Saint Petersburg City Tuberculosis Dispensary,
Zvezdnaya str., 12, 196158, St. Petersburg, Russia;

E-mail: ilya.kuznetsov.ilya@gmail.comst062514@student.spbu.ru

Anastasia S. Alekseikova

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
10th Line V.O., 33–35, 197761, St. Petersburg, Russia;
E-mail: anastasia.alekseikova@yandex.rust062524@student.spbu.ru

Petr K. Yablonsky

Saint Petersburg Research Institute of Phthisiopulmonology,
Ligovsky Avenue, 2–4, 191036, St. Petersburg, Russia;
E-mail: info@spbniif.ru

Evgeny A. Panidi

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
10th Line V.O., 33–35, 197761, St. Petersburg, Russia;
E-mail: panidi@ya.rue.panidi@spbu.ru

Abstract

The article discusses content and some results of a study devoted to the integration of a geographic information system (GIS) with medical information systems (MIS). The GIS is developed upon the basis of QGIS software. The MISs used in Russian medical organizations are discovered, particularly the MISs based upon the Barclay medical database management system (Barclay DBMS). Within the study framework, a three-tier system for the medical geospatial data exchange in an integrated MIS-GIS was proposed; tools and methods were developed for data conversion and transmitting between participants involved into in the medical data management processes. The study is carried out upon data of the St. Petersburg city tuberculosis service; specialists of the SPbNIIF (St. Petersburg Research Institute of Phthisiopulmonology) and SPbCTD (St. Petersburg City Tuberculosis Dispensary) are involved in the research. Developed tools make it possible to monitor and study the spatial distribution and dynamics of of tuberculosis infection cases and concomitant diseases. The study is carried out on the scale of a large city, on the example of St. Petersburg (Russia). As a result of the work done, the implementation of GIS tools into the work of the city medical services has carried out; has ensured prompt detection and mapping of areas having maximal risk of the socially significant diseases spread; has ensured collection and representation to the user (doctor) and to the controlling persons of objective information on diseases structured not only by administrative units (districts and municipalities), but by individual houses and apartments also; the data is represented in the form of intuitive cartographic images; assistance is provided to medical specialists in the formation of an effective disease prevention system and in the identification of strong and weak elements of the disease control system.

Keywords

medical geospatial data, MIS-GIS, geospatial data management, QGIS, Barclay

References

  1. Belilovsky E.M., Borisov S.E. Organization of epidemiological monitoring of tuberculosis in the city of Moscow. Problems of Social Hygiene, Public Health and History of Medicine. 2021. Vol. 29 (S2). P. 1275–1280. DOI: 10.32687/0869-866X-2021-29-s2-1275-1280 (in Russian).
  2. Chistobayev A.I., Semenova Z.A. Medico-geographical mapping in the former USSR and modern Russia. Vestnik SanktPeterburgskogo Universiteta, Seriya Geologiya i Geografiya. 2013. Vol. 4. P. 109–112 (in Russian).
  3. Franch-Pardo I., Napoletano B.M., Rosete-Verges F., Billa L. Spatial analysis and GIS in the study of COVID-19. A review. Science of the Total Environment. 2020. Vol. 739. Article 140033. DOI: 10.1016/j.scitotenv.2020.140033.
  4. Gatrell A.C., Bailey T.C. Interactive spatial data analysis in medical geography. Social Science and Medicine. 1996. Vol. 42 (6). P. 843–855. DOI: 10.1016/0277-9536(95)00183-2.
  5. Golovanova M.N. Improvement of anti-tuberculosis actions using a computer program for monitoring tuberculosis foci. Dissertation for the degree of Candidate of Medical Sciences. Yaroslavl, 2020. 137 p. (in Russian).
  6. Gordon A., Womersley J. The use of mapping in public health and planning health services. Journal of Public Health. 1997. Vol. 19 (2). P. 139–147. DOI: 10.1093/oxfordjournals.pubmed.a024601.
  7. Jeefoo P., Tripathi K.N. Dengue risk zone index (DRZI) for mapping dengue risk areas. International Journal of Geoinformatics. 2011. Vol. 7 (1). P. 53–62.
  8. Kuznetsov I., Panidi E., Kikin P., Kolesnikov A., Korovka V., Galkin V. Issues of geographic information systems and thematic mapping application to analysis of epidemiological situation in large cities. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2021. Vol. XLIII-B4-2021. P. 287–292. DOI: 10.5194/isprs-archives-XLIII-B4-2021-287-2021.
  9. Kuznetsov I., Panidi E., Kolesnikov A., Kikin P., Korovka V., Galkin V. GIS-based infectious disease data management on a city scale, case study of St. Petersburg, Russia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2020. Vol. XLIII-B3-2020. P. 1463–1467. DOI: 10.5194/isprs-archives-XLIII-B3-2020-1463-2020.
  10. Kuznetsov I., Panidi E., Korovka V., Galkin V., Voronov D. Web-based representation and management of infectious disease data on a city scale, case study of St. Petersburg, Russia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2020. Vol. XLIV-3/W1-2020. P. 87–91. DOI: 10.5194/isprs-archives-XLIV-3-W1-2020-87-2020.
  11. Malkhazova S.M., Mironova V.A., Pestina P.V., Orlov D.S. Emerging and re-emerging infections in Russia: A medico-geographical aspect. Vestnik Moskovskogo Universiteta. Seriya 5: Geografiya. 2016. Vol. 5. P. 24–32 (in Russian).
  12. Mayer J.D. The role of spatial analysis and geographic data in the detection of disease causation. Social Science and Medicine. 1983. Vol. 17 (16). P. 1213–1221. DOI: 10.1016/0277-9536(83)90014-X.
  13. Obuhov L., Panidi E. Toward correctness control of postal addresses geocoding InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MGU, Faculty of Geography. 2021. Vol. 27. Part 2. P. 114–127. DOI: 10.35595/2414-9179-2021-2-27-114-127 (in Russian).
  14. Plieva S.L. Prediction of respiratory tuberculosis relapses in modern conditions. Dissertation for the degree of Candidate of Medical Sciences. Moscow, 2020. 137 p. (in Russian).
  15. Qi Y., Guo K., Zhang C., Guo D., Zhi Z. A VGI-based foodborn disease report and forecast system. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience. 2018. Article a18. DOI: 10.1145/3284103.3284124.
  16. Richterich A. Digital health mapping: Big data utilization and user involvement in public health surveillance. Geographies of Digital Culture. 2017. P. 144–185. DOI: 10.4324/9781315302959_10.
  17. Rizwan M., Dass S.C., Asirvadam V.S., Gill B.S., Sulaiman L.H. DenMap: a Dengue surveillance system for Malaysia. Journal of Physics: Conference Series. 2018. Vol. 1123. Issue 1. Article 012045. DOI: 10.1088/1742-6596/1123/1/012045.
  18. Schweikart J., Kistemann T. Mapping health and health care [Kartographie der Gesundheit]. Kartographische Nachrichten. 2013. Vol. 63 (1). P. 3–11 (in German).
  19. Stampach R., Konecny M., Kubicek P., Geryk E. Dynamic cartographic methods for visualisation of health statistics. Lecture Notes in Geoinformation and Cartography. 2010. Article 199089. P. 431–442. DOI: 10.1007/978-3-642-03294-3_27.

For citation: Kuznetsov I.S., Alekseikova A.S., Yablonsky P.K., Panidi E.A. Integration of geographic information systems into in-use medical information systems, data flow management. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 261–275. DOI: 10.35595/2414-9179-2022-2-28-261-275 (in Russian)