GIS methods to research spatial inequality of population income distribution in Argentina

DOI: 10.35595/2414-9179-2022-2-28-34-49

View or download the article (Rus)

About the Author

Anton S. Gladkiy

Lomonosov Moscow State University, Faculty of Geography,
Leninskie gory str., 1, 119991, Moscow, Russia;
E-mail: antony.gladky@gmail.com

Abstract

Argentina is a country with a very specific system of territorial division carried out for the optimization of public administration and collection of statistics. Historically developed spatial heterogeneity of socio-economic development has several specific features, as well as non-trivial factors, due to which the country is formed by a peculiar pattern of territorial inequalities. In addition to administrative divisions into provinces and departments, Argentina has a number of statistical division grids for the lower scale levels. However, the organization of the collection of statistical data for different levels of territorial division is not optimal: for a number of regions, statistical data in the public domain are practically absent, or presented in aggregated form. The aim of the research is to identify territorial differences in socio-economic development between regions and at various scale levels. The use of GIS methods made it possible to obtain the missing data for the lower level of territorial division, such as the spatial data on the administrative boundaries, population and income. The analysis of spatial autocorrelation of income distribution in Argentina can identify regions of growth as well as the influence of local factors on the territorial inequality in Argentina. The value of the coefficient of spatial autocorrelation of population income is one of the highest around the world.

Keywords

regional inequality, multi-scale approach, modifiable areal unit problem, spatial autocorrelation, georeferencing, Voronoi diagram, Argentina

References

  1. Ackermann G. Mapas y SIG (1970–2010). Gestión de la Información Geoestadística. 2014.
  2. Almeida E. Econometria espacial aplicada. Campinas: Editora Alínea, 2012. 498 p.
  3. Atlas histórico y geográfico de la Argentina. Velázquez G., Celemin J.P. eds. 1a ed. Universidad Nacional del Centro de la Provincia de Buenos Aires, 2020. 687 p. Web resource: https://igehcs.conicet.gov.ar/se-publico-el-primer-tomo-del-atlas-historico-y-geografico-de-la-argentina/?fbclid=IwAR3WhHK2OguS1CFtzHGIJnocoKxp23tvnZeOUpF91OsueHLyFpeFV8ODDTo (accessed 01.08.2021).
  4. Elbers C., Lanjouw J., Lanjouw P. Micro-level estimation of poverty and inequality. Econométrica. 2003. Vol. 71. No. 1. P. 355–364.
  5. Grekousis G. Spatial Autocorrelation. Spatial Analysis Methods and Practice: Describe–Explore–Explain through GIS. Cambridge: Cambridge University Press, 2020. P. 207–274.
  6. Krivosheina A.M., Samsonov T.E. Joint generalization of settlements and transportation network in small scales. Proceedings of the International conference “InterCarto. InterGIS”. Moscow: MSU Publ., 2012. Vol. 18. P. 419–425 (in Russian).
  7. Novotny J. On the measurement of regional inequality: does spatial dimension of ncome inequality matter? Annals of Regional Science. 2007. Vol. 41. No. 3. P. 563–580.
  8. Openshaw S. The modifiable areal unit problem. Concepts and techniques in modern geography. Norvich: GeoBooks, 1984. 86 p.
  9. Samsonov T.E., Yurova N.D. The usage of choropleths and diagrams on multiscale socio-economic maps. Geodesy and Cartography. 2014. No. 11. P. 30–38 (in Russian).
  10. Shorrocks A., Wan G. Spatial decomposition of inequality. Journal of Economic Geography. 2005. Vol. 5. No. 1. P. 59–81.
  11. Treyvish A.I. Uneven and structurally diverse spatial development of economy as a scientific problem and Russian reality. Spatial Economics, 2019. Vol. 15. No. 4. P. 13–35 (in Russian).
  12. Tuvaleva Yu.V., Samsonov T.E. Analysis of regional features of Russian populated places location with the methods of spatial statistics. Proceedings of the International conference “InterCarto. InterGIS”. Moscow: Nauka, 2014. Vol. 20. P. 543–547 (in Russian).
  13. Tobler W. A computer movie simulating urban growth in the Detroit region. Economic Geography. 1970. No. 46. P. 234–240.
  14. Zubarevich N.V., Tikunov V.S., Krepets V.V., Strijov V.V., Shakin V.V. Multivariate methods for human development index estimation in Russian regions. Proceedings of the International conference “InterCarto. InterGIS”. 2001. No. 7. P. 84–105 (in Russian).

For citation: Gladkiy A.S. GIS methods to research spatial inequality of population income distribution in Argentina. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2022. V. 28. Part 2. P. 34–49. DOI: 10.35595/2414-9179-2022-2-28-34-49 (in Russian)