Genome instability as an indicator of environmental state in the Murmansk region

View or download the article (Rus)

About the Author

Viktoria V. Pozharskaya

Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”,
Apatity, Russia;


The data of various researchers indicate that the combined effects of natural and anthropogenic factors directly affect the nature of the territorial morbidity of the inhabitants of the Far North. In biomonitoring of the environment, a micronucleus test on human cells is widely used to assess the degree of genotoxicity of the comparison areas. The aim of the research is to study the local situation with the accumulation of lesions in the lymphocytes of children living in the Murmansk region using a micronucleus test. As a result of assessing the cytogenetic status of the child population living in the comparison territories (Krasnoshchelye, Lovozero, Umba, Apatity), specific territorial features of the cytogenetic status of children were revealed, which are probably associated with the prevailing morbidity in the territories comparisons. This is probably due to territorial genotoxic and toxic agents. Significant differences in the frequency of occurrence of binucleated lymphocytes with micronuclei in schoolchildren were noted when all cells (mononuclear, binuclear, trinuclear, quadrenuclear cells, as well as cells containing more than 4 nuclei) were taken into account between Krasnoshchelye, Lovozero (U = 45.0, p = 0.0009), Umba (U = 91.0, p = 0.0125) and Apatity (U = 113.0, p = 0.0125). Also, significant differences were noted between the frequency of occurrence of cells with micronuclei among cells that did not respond to the mitogenic signal (mononuclear) and contain more than 2 nuclei in lymphocytes between adolescents from Krasnoshchelye and Apatity (U = 109.0, p = 0.0093) and Umba (U = 73.5, p = 0.0025). When comparing the frequency of occurrence of all types of cells containing micronuclei in the lymphocytes of adolescents, significant differences were revealed between the frequency of occurrence of such cells in adolescents from Apatity and Umba (U = 97.0, p = 0.0036).


lymphocytes, Murmansk region, micronucleus test, genotoxicity, biomonitoring, children, schoolchildren, residents of the Far North.


  1. Aghajanyan A., Kuzmina N., Suskov I., Sipyagina A., Baleva L. Analysis of Genomic Instability in the Offspring of Fathers Exposed to Low Doses of Ionizing Radiation. Environ Molecul Mutagenesis, 2011. V. 52 (5). P. 83–91.
  2. Baleva L.S., Nomura T., Sipyagina A.E., Karahan N.M., YAkusheva E.N., Egorova N.I. Cytogenetic effects and the possibilities of their transgenerational transmission in generations of persons living in regions of radionuclide contamination after the Chernobyl accident. Russian Bulletin of Perinatology and Pediatrics, 2016. V. 3. P. 87–94 (in Russian). DOI: 10.21508/1027-4065-2016-61-3-87-94.
  3. Baleva L.S., Sipyagina A.E. Risk predictors of the formation of radiation-induced stochastic diseases in generations of children from families of irradiated parents are an urgent problem of our time. Russian Bulletin of Perinatology and Pediatrics, 2019. V. 64 (1). P. 7–14. (in Russian). DOI: 10.21508/1027-4065-2019-64-1-7-14.
  4. Balansky R.B., D’Agostini F., Zanacchi P., De Flora S. Protection by N-acetylcysteine of the histopathological and cytogenetical damage produced by exposure of rats to cigarette smoke. Cancer. Lett., 1992. V. 64 (2). P. 123–131.
  5. Belisheva N.K. The contribution of high-latitude heliogeophysical agents to the morbidity of the population of the Euro-Arctic region. Bulletin of the Ural Medical Academic Science, 2014. V. 2 (48). P. 5–11 (in Russian).
  6. Belisheva N.K., Martynova A.A. An integrated approach to identify the causes of morbidity in the child population of the Kola North. Problems of human adaptation and maladjustment in extreme conditions of the Arctic. Bulletin of the Ural Medical Academic Science, 2019. V. 16 (2). P. 78–85 (in Russian). DOI: 10.22138/2500-0918-2019-16-2-78-85.
  7. Belisheva N.K., Petrov V.N. The problem of public health in the light of the implementation of the development strategy for the Arctic zone of the Russian Federation. Proceedings of the Kola Scientific Center of the Russian Academy of Sciences, 2013. V. 4. P. 151–173. (in Russian).
  8. Belisheva N.K., Talykova L.V., Mel’nik N.A. Biomedical monitoring—as a means of assessing the quality of the environment for the health of the population in the North. Materials of the VII Northern Social and Environmental Congress, 2012. P. 93–111 (in Russian).
  9. Belisheva N.K., Talykova L.V. Relationship of some pathological outcomes of pregnancy with sources of ionizing radiation in the environment. Environmental problems of the northern regions and ways to solve them: Proceedings of the V All-Russian scientific conference with international participation, 2014. V. 3. P. 151–155 (in Russian).
  10. Byahova M.M. Analysis of karyological parameters in children with bronchial asthma and in the comparison group in Tula. Materials of the II All-Russia. scientific and practical. conf. young scientists and specialists “Environment and Health”, 2007. P. 13–14 (in Russian).
  11. Bonassi S., Ugolini D., Kirsch-Volders M., Strömberg U., Vermeulen R., Tucker J.D. Human population studies with cytogenetic biomarkers: review of the literature and future prospectives. Environ Mol Mutagen., 2005. V. 54. P. 258–270.
  12. Calveley V.L., Khan M.A., Yeung I.W. et al. Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int. J. Radiat. Biol., 2005. V. 81 (12). P. 887–899.
  13. Chang J.L., Chen G., Lampe J.W., Ulrich C.M. DNA damage and repair measurements from cryopreserved lymphocytes without cell culture-a reproducible assay for intervention studies. Environ. Mol. Mutagen., 2006. V. 47 (7). P. 503–508.
  14. Chinnasamy N., Rafferty J.A., Hickson I. et al. O6-benzylguanine potentiates the in vivo toxicity and clastogenicity of temozolomide and BCNU in mouse bone marrow. Blood, 1997. 89 (5). P. 1566–1573.
  15. El-Zein R.A., Schabath M.B., Etzel C.J. et al. Cytokinesis-blocked micronucleus assay as a novel biomarker for lung cancer risk. Cancer Res., 2006; V. 66 (12). P. 6449–6456.
  16. Fenech M. Biomarkers of genetic damage for cancer epidemiology. Toxicology, 2002. V. 181. P. 411–416.
  17. Fenech M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc., 2007. V. 2 (5). P. 1084–1104.
  18. Fenech M., Bonassi S., Turner J. et al. Human Micro Nucleus project. Intra- and interlaboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Results of an international slide-scoring exercise by the HUMN project. Mutat Res., 2003. V. 534 (1–2). P. 45–64.
  19. Fenech M., Holland N., Zeiger E., Chang W.P., Burgaz S., Thomas P., Bolognesi C., Knasmueller S., Kirsch-Volders M., Bonassi S. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells: past, present and future. Mutagenesis, 2011. V. 26 (1). P. 239–245.
  20. Fenech M., Morley A. Solutions to the kinetic problem in the micronucleus assay. Cytobios., 1985. V. 43 (172–173). P. 233–246.
  21. Gorovaya A.I., Klimkina I.I. The use of cytogenetic testing to assess the ecological situation and the effectiveness of the rehabilitation of children and adults with natural adaptogens. Cytology and genetics, 2002. V. 36 (5). P. 21–25. (in Russian).
  22. Hancock S, Nguyen T.K. Vo, Roza I. Goncharova, Colin B. Seymour, Soo Hyun Byun, Carmel E. Mothersill. One-Decade-Spanning transgenerational effects of historic radiation dose in wild populations of bank voles exposed to radioactive contamination following the chernobyl nuclear disaster. Environmental Research, 2020. V. 180. P. 2–5.
  23. Hanson K.P., Komar V.E. Molecular mechanisms of radiation cell death. Energoatomizdat, 1985. 150 p. (in Russian).
  24. Ingel’ F.I. Quality of life and individual sensitivity of the human genome. Is there a way out of the vicious circle? Ekologicheskaya genetika, 2005. V. 3 (3). P. 38–46 (in Russian).
  25. Ingel’ F.I. Prospects for the use of the micronucleus test on human lymphocytes cultured under conditions of a cytokinetic block. Part 1. Cell proliferation. Environmental genetics, 2006. V. 4 (3). P. 38–54. (in Russian).
  26. Ingel’ F.I., Prikhozhan A.M., Tsutsman T.E., Revazova Yu.A. Assessment of the depth of stress and its use in the conduct of genetically toxicological studies in humans. Vestnik Rossiyskoy akademii meditsinskikh nauk, 1997. V. 7. P. 24-8. (in Russian).
  27. Ingel’ F.I., Revazova Yu.A. Modification by emotional stress of mutagenic effects of xenobiotics in animals and humans. Research in genetics, 1999. V. 12. P. 86–103. (in Russian).
  28. Kalaev V.N., Butorina A.K., Kudryavceva O.L. The frequency of occurrence of cells with micronuclei in squamous epithelium obtained from scrapings from the cervix of women of childbearing age under various physiological conditions, in health and inflammation. Natural science and humanism, 2006. V. 3 (2). P. 22–23 (in Russian).
  29. Korsakov A.V., Troshin V.P., Mihalev V.P., ZHilin A.V., ZHilina O.V., Vorob’eva D.A., Korotkova N.S.Comparative assessment of the frequency of cytogenetic disorders in the buccal epithelium of children in ecologically unfavorable areas of the Bryansk region. Toxicological Bulletin, 2012. V. 1. P. 29–34 (in Russian).
  30. Lyapunova E.R., Komarova L.N. The effect of rare and densely ionizing radiation on the population of chlorella vulgaris. Radiation and risk, 2014. V. 23 (4). P. 55–64 (in Russian).
  31. Meyer A.V., Tolochko T.A., Minina V.I., Timofeeva A.A. Influence of DNA repair genes polymorphism on karyology of buccal epithelium cells in humans exposed to radon. Ecological genetics, 2014. V. 12 (1). P. 28–38 (in Russian).
  32. Mireckij G.I., Ramzaev P.V., Zaharchenko M.P., Luchkevich V.S. Radiation factor in the Far North of Russia. St. Petersburg: GNIKI SKU “Sistema”. 1999. 132 p. (in Russian).
  33. Pelevina I.I., Afanas’ev G.G., Aleshchenko A.V., Antoshchina M.M, Gotlib V.YA., Konradov A.A., Kudryashova O.V., Lizunova E.YU., Osipov A.N., Ryabchenko N.I., Serebryanyj A.M. Molecular-cellular consequences of the Chernobyl accident. Radiation. biology. Radioecology, 2011. V. 51 (1). P. 154–161 (in Russian).
  34. Prozorovskij V.B., Skopichev V.G. Distant action in the pathogenesis of poisoning with organophosphate compounds. Reviews on Clinical Pharmacology and Drug Therapy, 2004. V. 3 (3). P. 56–65 (in Russian).
  35. Ryabokon N.I., Smolich I.I., Kudryashov V.P., Goncharova R.I. Long-term development of the radionuclide exposure of murine rodent populations in Belarus after the Chernobyl accident. Radiat. Environ. Biophys., 2005. V. 44. P. 169–181. DOI: 10.1007/s00411-005-0015-2.
  36. Suskov I.I., Kuz’mina N.S., Suskova V.S. Baleva L.S., Sipyagina A.E. The problem of induced genomic instability as the basis of increased morbidity in children exposed to low-intensity radiation in low doses. Glad. biology. Radioecology, 2006; V. 46 (2). P. 167–177 (in Russian).
  37. Tolbert P.E., Shy C.M., Allen J.W. Micronuclei and other nuclear anomalies in buccal smears: methods development. Mut. Res., 1992. V. 271. P. 69–77.
  38. Yager J.W., Sorsa M., Selvin S. Micronuclei in cytokinesis-blocked lymphocytes as an index of occupational exposure to alkylating cytostatic drugs. IARC Sci Publ., 1988. V. 89. P. 213–216.
  39. Zavadskaya T.S., Mihajlov R.E., Belisheva N.K. Analysis of the contributions of geophysical agents and endogenous microflora to the incidence of diseases of the genitourinary system in men in the Kola North. Bulletin of the Ural Medical Academic Science, 2018. V. 15(2). P. 162–175. DOI: 10.22138/2500-0918-2018-15-2-162-175 (in Russian).

For citation: Pozharskaya V.V. Genome instability as an indicator of environmental state in the Murmansk region InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 4. P. 333–346. DOI: 10.35595/2414-9179-2021-4-27-333-346 (In Russian)