Estimation of the relation of NDVI steppe vegetation and radial growth of pine belt forests in arid conditions of the south of Western Siberia

DOI: 10.35595/2414-9179-2021-2-27-355-367

View or download the article (Rus)

About the Authors

Natalia V. Rygalova

AltayStateUniversity, Institute of Geography,
Lenin Avenue, 61, 656049 Barnaul, Russia;
E-mail: natalia.ml@mail.ru

Tatiana G. Plutalova

Institute for Water and Environmental problems SB RAS,
Molodezhnaya str., 1, 656038, Barnaul, Russia;
E-mail: plutalova.tg@gmail.com

Abstract

This article presents a spatial-temporal analysis of the NDVI vegetation series (based on the MODIS satellite data) and dendrochronological data obtained for the steppe regions of the Altai Territory. NDVI series are built for five polygons of natural and natural-anthropogenic steppe landscapes for the period 2000–2018. Experimental areas of natural landscapes are located in coastal and specially protected natural areas, natural and anthropogenic arable lands. Most of the points are located in the dry-steppe sub-provinces of the steppe zonal area, a smaller part is in the arid-steppe (including the dendrochronological area). The chronology of the tree ring width is built for the Scots pine in the steppe part of extrazonal belt pine forests. A positive trend in vegetation indices change and a weak positive trend for the tree-ring chronology of the pine were found for the NDVI series of almost all polygons for the study period. A more pronounced positive trend is characteristic of the area with the lowest average NDVI values, while a negative trend is characteristic of the area with the highest average values of the vegetation index. The correlation of the NDVI series averaged over polygons with each other ranged from 0.54 to 0.64 (significant at p < 0.05). The dependence of the analyzed series on the dynamics of moistening of the territory was revealed. The correlation coefficients of the Selyaninov hydrothermal coefficient with the NDVI series ranged from 0.51 to 0.76, and with the tree-ring chronology was 0.63 (significant at p < 0.05). A statistically significant relationship was established for some points between the chronology of the pine and the NDVI series, mostly related to dry steppe vegetation.

Keywords

NDVI, hydrothermal coefficient, tree-ring chronology, dry steppe, pine belt forests

References

  1. Arzac A., Babushkina E.A., Fonti P., Slobodchikova V., Sviderskaya I.V., Vaganov E.A. Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. Dendrochronologia. 2018. V. 49. P. 1–8. DOI: 10.1016/j.dendro.2018.02.007.
  2. Coulthard B.L., Touchan R., Anchukaitis K.J., Meko D.M., Sivrikaya F. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean. Environmental Research Letters. 2017. No. 12. 084008. DOI: 10.1088/1748-9326/aa7b26.
  3. Ferguson C.W. A 7104-year annual tree-ring chronology for Bristlecone pine, pinusaristata, from the White Mountains, California. Tree-Ring Bull. 1969. V. 29. No. 3–4. P. 3–29.
  4. Liu R., Song Y., Liu Y., Li X., Song H., Sun C., Li Q., Cai Q., Ren M., Wang L. Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE. Forests. 2021. No. 12. 241. DOI: 10.3390/f12020241.
  5. Malmström C.M., Thompson M.V., Juday G.P., Los S.O., Randerson J.T., Field C.B. Interannual variation in global-scale net primary production: testing model estimates. global Biogeochemical Cycles. 1997. V. 11. No. 3. P. 367–392. DOI: 10.1029/97GB01419.
  6. Mordkovich V.G. Steppe ecosystems. Novosibirsk. 2014. 170 p. (in Russian).
  7. Nemtseva L.D., Bespalova L.A., Golubeva E.I., Mikhailov S.I. Assessment of the status of vegetation cover of dry steppe landscapes under the conditions of cattle grazing applying the methods of remote sensing of the Earth. Proceedings of the Southern scientific center of the Russian Academy of Sciences. 2018. V. VII. P. 151–164 (in Russian). DOI: 10.23885/1993-6621-2018-7-151-164.
  8. Pravdin L.F. Scots pine. Variability, intraspecific systematics and selection. Moskow: Nauka, 1964. 191 p. (in Russian).
  9. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the Great Plains with ERTS / In 3rd ERTS Symposium, NASA SP-351 I. 1973. P. 309–317.
  10. Rinn F. TSAP V3.5. Computer program for tree-ring analysis and presentation. Heidelberg: Frank Rinn Distribution, 1996. 264 p.
  11. Sajb E.A., Bezborodova A.N., Solov’ev S.V., Miller G.F., Filimonova D.A. Identification of different age fallows on erosion-hazardous territories of the south of Western Siberia using geo-information technologies. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2020. V. 17. No. 4. P. 129–136 (in Russian).
  12. Shijatov S.G., Vaganov E.A., Kirdyanov A.V., Kruglov V.B., Mazepa V.S., Naurzbaev M.M., Hantemirov R.M. Metody dendrohronologii (Methods of dendrochronology). V. I. Krasnojarsk: Krasnojarsk University Publ., 2000. 80 p. (in Russian).
  13. Telnova N.O. Revealing and mapping long-term NDVI trends for the analysis of climate change contribution to agroecosystems’ productivity dynamics in the Northern Eurasian forest-steppe and steppe. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. V. 14. No. 6. P. 97–107 (in Russian).
  14. Vangnic P.R. Pine belt Forests. Moskow: goslesbumizdat, 1953. 153 p. (in Russian).
  15. Vicente-Serrano S.M., Camarero J.J., Olano J.M., Martín-Hernández N., Peña-Gallardo M., Tomás-Burguera M., Gazol A., Azorin-Molina C., Bhuyan U., Kenawy A. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment. 2016. 187. P. 14–29. DOI: 10.1016/j.rse.2016.10.001.
  16. Wang J., Rich P.M., Price K.P., Kettle W.D. Relations between NDVI and tree productivity in the central Great Plains. Int. J. Remote Sensing. 2004. V. 25. No. 16. P. 3127–3138. DOI: 10.1080/0143116032000160499.
  17. Wang W.Z., Liu X.H., Chen T., An W., Xu G. Reconstruction of regional NDVI using treering width chronologies in the Qilian Mountains, northwestern China. Chinese Journal of Plant Ecology. 2010. V. 34. No. 9. P. 1033–1044. DOI: 10.3773/j.issn.1005-264x.2010.09.004.
  18. Zolotokrylin A.N., Titkova T.B., Ulanova S.S., Fedorova N.L. Ground-based and satellite investigation of production of pastures in Kalmykia that vary in degree of vegetation degradation. Arid Ecosystems. 2013. V. 3. No. 4. P. 212–219.

For citation: Rygalova N.V., Plutalova T.G. Estimation of the relation of NDVI steppe vegetation and radial growth of pine belt forests in arid conditions of the south of Western Siberia. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 355–367. DOI: 10.35595/2414-9179-2021-2-27-355-367 (in Russian)