Development of natural fire prevention method based on remote sensing data: case study of Krasnoyarsk region forests

View or download the article (Rus)

About the Author

Almaz T. Gizatullin

Lomonosov Moscow State University, Faculty of Geography, Department of Cartography and Geoinformatics,
Leninskie Gory 1, 119991, Moscow, Russia;


The stages of development of natural fire prevention method based on remote sensing data were considered. The case study is focused on Krasnoyarsk region forests. There was a rationale for selecting a study area on the basis of statistical fire data (FIRMS thermal hot spots 2016–2018) and a variety of fire conditions. The fire assessment was founded on the most informative fire factors—surface temperature, vegetation cover inhomogenuity and man-made load, which are derived by the natural-fire characteristics of the territory. These factors were evaluated by measuring parameters closed to them, respectively—radiobrightness temperature based on thermal emission, vegetation index NDVI and integral indicator of distance to settlements and roads. Materials from the Terra/Aqua, Sentinel-3, Landsat-8, Sentinel-2 satellites and Open Street Maps vector map layers were used as data sources. With use of statistical data, the relationship between above parameters and the present fire danger of Krasnoyarsk region was analyzed. Based on the results, we obtained different by forest rayon and fire season month correlation coefficients that described the contribution of individual factors to a fire danger, and threshold values of parameters for preventing fires. Then a sequence of stages of analytical and synthetic fire danger assessment as a study method was built. Validation of the method was performed in the most fire dangerous and representative in terms of fire conditions area in the south-west of the Krasnoyarsk Territory from April 1 to May 10, 2019. It showed sufficient accuracy (65 %) and reliability (58 %) of fire forecast.


fire danger assessment, remote sensing data, fire danger factors, threshold values.


  1. Amatulli G., Peréz-Cabello F., de la Riva J. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecological Modelling, 2007. V. 200. No. 3. P. 321–333. DOI: 10.1016/j.ecolmodel.2006.08.001.
  2. Bradshaw L.S., Deeming J.E., Burgan R.E., Cohen J.D. The 1978 National Fire-Danger Rating System: technical documentation. General Technical Report INT-169. Ogden: U.S. Department of Agriculture, Forest Service, 1984. 44 p.
  3. Calabri G. La prevenzione degli Incendi Boschivi. I problemi e le Tecniche della Difesa. Bologna: Edagricole, 1984.
  4. Chéret V., Denux J.P. Analysis of MODIS NDVI Time Series to Calculate Indicators of Mediterranean Forest Fire Susceptibility. GIScience & Remote Sensing, 2011. V. 48. No. 2. P. 171–194. DOI: 10.2747/1548-1603.48.2.171.
  5. Dong X., Li-min D., Guo-fan S., Lei T., Hui W. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau. Journal of Forestry Research. Jilin, 2005. No. 16. P. 169–174. DOI: 10.1007/BF02856809.
  6. Dowdy A.J., Mills A.G., Finkele K., de Groot W. Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index. CAWCR Technical Report, 2009. No. 10. 91 p.
  7. Furjaev V.V., Cvetkov P.A., Furjaev I.V., Zlobina L.P. Conditions of fire origin and spreading in forest regions of Krasnoyarsk krai. Conifers of the boreal area, 2017. V. 35. No. 1–2. P. 66–74 (in Russian).
  8. Hirsch S.N., Kruckeberg R.F., Madden F.H. The bi-spectral forest detection system. Proceeding 7th International Symposium on Remote Sensing of Environment. Ann Arbor, 1971. P. 2253–2259.
  9. Marchi E., Tesi E., Montorselli N.B. Forest fire prevention: a GIS tool for fire-fighting planning and management. Proceedings of the 6th International Workshop of The EARSeL Special Interest Group on Forest Fires. Thesalonniki, 2007. P. 102–106.
  10. Rabii H.A. An Investigation of the utility of Landsat-2 MSS data to the fire-danger rating area, and forest fuel analysis within Crater Lake National Park: Ph.D. thes. Oregon, 1979. 410 p.
  11. Rignot E., Way J.B., McDonald K., Viereck L., Williams C., Adams P., Payne C., Wood W., Shi J. Monitoring of environmental conditions in taiga forests using ERS-1 SAR. Remote Sensing of the Environment, 1994. No. 49. P. 145–154. DOI: 10.1016/0034-4257(94)90051-5.
  12. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the great plains with ERTS. Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, 1974. No. 1. P. 309–317.
  13. Rjazanova N.E., Sorokin P.A. The experience of remote vegetation sensing application in the Russian Arctic Ecosystems dynamics study. Earth sciences: yesterday, today, tomorrow. Proceeding of III International scientific conference, 2017. P. 7–12 (in Russian).
  14. Skowronski N.S., Clark K.L., Duveneck M., Hom J. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment, 2011. V. 115. P. 703–714. DOI: 10.1016/j.rse.2010.10.012.
  15. Sofronova A.V., Volokitina A.V. Assessment of fire hazard for forest sites at the territory of oil and gas complexes using Earth remote sensing data. Siberian Journal of Forest Science, 2017. No. 5. P. 84–94 (in Russian). DOI: 10.15372/SJFS20170508.
  16. Stergiopoulos I., Mallinis G., Gitas I.Z. Fuel type mapping using medium resolution imagery and GIS, considering radiometric, spatial and spectral enhancements of the original dataset. Proceedings of the 6th International Workshop of The EARSeL Special Interest Group on Forest Fires. Thesalonniki, 2007. P. 107–110.
  17. Suhinin A.I., Ponomarev E.I. Mapping and Short-Term Forecast of Fire Risk in the Forests of East Siberia according to Satellite Data. Siberian Journal of Ecology, 2003. V. 10. No. 6. P. 669–677 (in Russian).
  18. Verbesselt J., Somers B., Lhermite S., Jonckheere I., van Aardt J., Coppin P. Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment, 2007. No. 108. P. 357–368. DOI: 10.1016/j.rse.2006.11.019.
  19. Yuan C., Zhang Y., Liu Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian journal of forest research, 2015. V. 45. No. 7. P. 783–792. DOI: 10.1139/cjfr-2014-0347.

For citation: Gizatullin A.T. Development of natural fire prevention method based on remote sensing data: case study of Krasnoyarsk region forests InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 340–354. DOI: 10.35595/2414-9179-2021-2-27-340-354 (In Russian)