Creation of high-precision digital elevation models using the GNSS UAV

https://doi.org/10.35595/2414-9179-2021-2-27-327-339

View or download the article (Rus)

About the Authors

Artur M. Gafurov

Kazan Federal University, Institute of Ecology and Environmental Sciences,
Tovarishcheskaya st. 5, 420097, Kazan, Russia;
E-mail: amgafurov@kpfu.ru

Oleg P. Yermolayev

Kazan Federal University, Institute of Ecology and Environmental Sciences,
Tovarishcheskaya st. 5, 420097, Kazan, Russia;
E-mail: oleg.yermolayev@kpfu.ru

Bulat M. Usmanov

Kazan Federal University, Institute of Ecology and Environmental Sciences,
Tovarishcheskaya st. 5, 420097, Kazan, Russia;
E-mail: busmanof@kpfu.ru

Petr V. Khomyakov

Kazan Federal University, Institute of Ecology and Environmental Sciences,
Tovarishcheskaya st. 5, 420097, Kazan, Russia;
E-mail: petr.khomyakov@kpfu.ru

Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly involved in surveying work, becoming a reliable basis for information on three-dimensional terrain features. Until now, ground reference points have been used to provide reliable planimetric evidence for measurements from drones. Their placement and coordinates measurement takes quite a long time, which increases proportionally to the area under study. In addition, the use of these marks produces model distortions (especially over large areas of 1 sq. km or more), which then lead to the appearance of areas of local depressions and uplifts where they are not present in the terrain. These distortions arise due to camera position optimization error minimization algorithms and cannot be corrected. Refusing to use ground control points leads to other geometric distortions associated with characteristics of survey system lenses mounted on UAVs (so-called “saddle-shaped” models). This paper presents the results of high-precision digital elevation models creation using built-in UAV Global Navigation Satellite System (GNSS) receivers. The methodology has been tested at ten sites in the Zakamye region of the Republic of Tatarstan (Russia) with an area ranging from 4 to 58 hectares. Correction of GNSS rover position was performed in post-processing from a virtual base station network located at a 6 to 70 km range from the surveyed sites. For all objects, DEM errors did not exceed 0.05 m on axes X, Y, and Z. At the same time, the dependence of the error value on the study area size was not revealed. The received results of the analysis of errors can indicate the prospect of the use of low-cost GNSS-UAVs without the necessity of organizing a network of ground reference points, being limited only to the necessity of installing control points will repeatedly reduce the time of the field works, in particular on hardly accessible objects.

Keywords

UAV, GNSS, DEM, accuracy assessment, topography, photogrammetry, Bulgarian settlements..

References

  1. Benassi F., Dall’Asta E., Diotri F., Forlani G., Morra di Cella U., Roncella R., Santise M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sens, 2017. V. 9. No. 2. P. 172. DOI: 10.3390/rs9020172.
  2. Bolkas D. Assessment of GCP Number and Separation Distance for Small UAS Surveys with and without GNSS-PPK Positioning. J. Surv. Eng, 2019. V. 145. No. 3. P. 04019007. DOI: 10.1061/(ASCE)SU.1943-5428.0000283.
  3. Dewez T.J.B., Leroux J., Morelli S. Cliff collapse hazard from repeated multicopter UAV acquisitions: return on experience. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 2016. V. XLI-B5. P. 805–811. DOI: 10.5194/isprsarchives-XLI-B5-805-2016.
  4. Dinkov D.A Low Cost Method UAV-PPK-Accuracy and Application. 2019. DOI: 10.13140/RG.2.2.31557.81123.
  5. Ermolaev O.P., Mal’tsev K.A., Mukharamova S.S., Kharchenko S.V., Vedeneeva E.A. Cartographic model of river basins of European Russia. Geogr. Nat. Resour, 2017. V. 38. No. 2. P. 131–138. DOI: 10.1134/S1875372817020032.
  6. Gafurov A., Gainullin I., Usmanov B., Khomyakov P., Kasimov A. Impacts of fluvial processes on medieval settlement Lukovskoe (Tatarstan, Russia). Proc. Int. Assoc. Hydrol. Sci, 2019. V. 381. P. 31–35. DOI: 10.5194/piahs-381-31-2019.
  7. Gafurov A. The Methodological Aspects of Constructing a High-Resolution DEM of Large Territories Using Low-Cost UAVs on the Example of the Sarycum Aeolian Complex, Dagestan, Russia. Drones, 2021. V. 5. No. 1. P. 7. DOI: 10.3390/drones5010007.
  8. Gafurov A.M., Yermolayev O.P. Automatic Gully Detection: Neural Networks and Computer Vision. Remote Sens, 2020. V. 12. No. 11. P. 1743. DOI: 10.3390/rs12111743.
  9. Gainullin I.I., Khomyakov P.V., Sitdikov A.G., Usmanov B.M. Qualitative assessment of the medieval fortifications condition with the use of remote sensing data (Republic of Tatarstan). Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCY2017), 2017. P. 104440X. DOI: 10.1117/12.2279136.
  10. Groves P.D. Principles of GNSS, inertial, and multisensor integrated navigation systems. Boston/London: Artech House, 2013. 776 p.
  11. Langley R.B. Rtk gps. Gps World, 1998. V. 9. No. 9. P. 70–76.
  12. Mancini F., Dubbini M., Gattelli M., Stecchi F., Fabbri S., Gabbianelli G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens, 2013. V. 5. No. 12. P. 6880–6898. DOI: 10.3390/rs5126880.
  13. Tahar K.N. An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block. Int Arch Photogramm Remote Sens Spat Inf Sci, 2013. V. 40. P. 93–98. DOI: 10.5194/isprsarchives-Xl-2-W2-93-2013.
  14. Takasu T., Yasuda A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. Int. Symp. GPSGNSS. 2009. P. 4–6.
  15. Tomaštík J., Mokroš M., Surový P., Grznárová A., Merganič J. UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas? Remote Sens, 2019. V. 11. No. 6. P. 721. DOI: 10.3390/rs11060721.
  16. Villanueva J.K.S., Blanco A.C. Optimization of ground control point (GCP) configuration for unmanned aerial vehicle (UAV) survey using structure from motion (SFM). Int Arch Photogramm Remote Sens Spat Inf Sci. 2019. P. 167–174. DOI: 10.5194/isprs-archives-XlII-4-W12-167-2019.
  17. Yu G., Su Y., Yu L., Gong L., Zhao D. Optimizing Pose of UAV Image Based on PPK Technology. China High Resolution Earth Observation Conference: Springer, 2019. P. 11–35. DOI: 10.1007/978-981-15-3947-3_2.
  18. Zhang H., Aldana-Jague E., Clapuyt F., Wilken F., Vanacker V., Van Oos K. Evaluating the potential of PPK Direct Georeferencing for UAV-SfM Photogrammetry and Precise Topographic Mapping. Earth Surf Dyn Discuss, 2019. P. 1–34. DOI: 10.5194/esurf-2019-2.

For citation: Gafurov A.M., Yermolayev O.P., Usmanov B.M., Khomyakov P.V Creation of high-precision digital elevation models using the GNSS UAV InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 327–339. DOI: 10.35595/2414-9179-2021-2-27-327-339 (In Russian)