Creating and updating of topographic maps height base in the new national spatial coordinate system: case Fergana valley

DOI: 10.35595/2414-9179-2021-2-27-155-164

View or download the article (Rus)

About the Authors

Dilbarkhon Sh. Fazilova

Ulugh Beg Astronomical Institute of Uzbek Academy of Sciences,
Astronomicheskaya str., 33, 100052, Tashkent, Republic of Uzbekistan;
E-mail: dil_faz@yahoo.com

Khasan N. Magdiev

Agency for cadastre,
Chuponota str., 5, 100097, Tashkent, Republic of Uzbekistan;
E-mail: hasan.magdiev@gmail.com

Abstract

The use of high-precision technology of the global navigation satellite system (GNSS) has put forward the task of developing the methods for the creation and the use of a new national open coordinate system in the Republic of Uzbekistan. In the country, up to now the CS42 coordinate system, based on the Krasovsky ellipsoid used for geodetic works. The Baltic normal system of heights (1977), tied to the mean sea level with the zero mark of the Kronstadt tide gauge, was adopted as a height datum.

Due to lack geoid information for the territory of the country determined by modern methods, the realization of a height reference datum becomes an urgent task. The results of GPS measurements usually presented in a coordinate system relative to the WGS-84 ellipsoid, and have to convert to national, local coordinate systems to solve practical problems. The horizontal GPS coordinates can directly use for computational work, but the geodetic heights have to convert to orthometric (or normal) heights for a given area using geoid information.

In this work, a study was made of methods for updating the height reference datum of topographic maps at a scale of 1:200,000 using a deformation matrix between two reference coordinate systems for the territory of the Fergana Valley. To convert between geodetic and normal heights between the CS42 and WGS84 coordinate systems, a vertical deformation matrix in the GTX format of the National oceanic and Atmospheric Administration of Canada (NOAA) have created.

To create a file of elevation displacements, the results of classical leveling and satellite GPS measurements have used at 144 “common” points of the entire network of the country with known coordinates in two systems. The difference between the “real” values of geodetic heights obtained from GPS measurements and “modeled” ranges from -0.13 m to 0.67 m. It has revealed that the maximum differences in heights are in the area of the Fergana basin itself and may be a consequence of both an anomalous gravitational field in this part of the territory, and an insufficient density of stations of the GPS network in the northeastern part of the area. The normal height values for the updated topographic map in WGS84 have computed using the EGM2008 high precision geopotential model. The discrepancy between the values of heights in CS42 and WGS84 is in the range of -3.93 m and 0.31 m.

Keywords

CS42, WGS84, coordinate transformation, GPS, vertical deformation matrix, vertical datum

References

  1. Makarenko N.L. Demyanov E.V., Novikov G.V. et al. Unified State System of Geodetic Coordinates 1995 (SK-95). Drazhnyuk A.A. (ed.). Moscow: Federal service of geodesy and cartography of Russia, 2000. 34 p. (in Russian).
  2. Altamimi Z., Rebischung P., Métivier L., Collilieux X. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. Journal of Geophysical Research: Solid Earth, 2016. V. 121. No. 8. P. 6109–31. https://doi.org/10.1002/2016jb013098.
  3. Barthelmes F. and Köhler W. International Centre for Global Earth Models (ICGEM), in: Drewes H., Kuglitsch F., Adám J. et.al. The Geodesists Handbook, Journal of Geodesy, 2016. V. 90. No. 10. P. 907–1205. https://doi.org/10.5194/egusphere-egu2020-3511.
  4. Collier P. Development of Australia’s National GDA94 Transformation grids, 2002. Consultant’s Report, Dept. of Geomatics, The University of Melbourne, Australia, 36 p. Web resource: https://www.icsm.gov.au/sites/default/files/natgrids_0.pdf (accessed 25.03.21).
  5. Dewhurst W.T. NADCON: The application of minimum-curvature-derived surfaces in the transformation of positional data from the North American Datum of 1927 to the North American Datum of 1983, 1990. NOAA Technical Memorandum NOS NGS 50. Web resource: www.geodesy.noaa.gov/PUBS_LIB/NOSNGS-50.pdf (accessed 25.03.21).
  6. Fazilova D., Ehgamberdiev Sh, Kuzin S. Application of time series modeling to national reference frame realization. Geodesy and Geodynamics. Elsevier: China, 2018. V. 10, Issue 4. P. 281–287. DOI: 10.1016/j.geog.2018.04.003.
  7. Fazilova D., Magdiev H. Comparative study of interpolation methods in development of local geoid. International Journal of Geoinformatics, 2018. V. 14. No. 1. P. 29–33.
  8. Grgic M., Varga M. and T. Bašić. The empirical comparison of coordinate transformation models and distortion modeling methods based on a case study of Croatia. Survey Review, 2015. No. 49 (353). P. 15–27. DOI: 10.1080/00396265.2015.1104092.
  9. Herring T.A., King R.W., Floyd M., McClusky S.C. Introduction to GAMIT/GLOBK. Release 10.7. Technical report. Massachusetts Institute of Technology, 2018. Web resource: http://geoweb.mit.edu/gg/Intro_GG.pdf (accessed 10.09.20).
  10. IERS Conventions. IERS Technical Note 36. Gérard Petit and Brian Luzum (eds.). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. 179 p.
  11. Junkins D.R. The National Transformation for Converting Between NAD27 and NAD83 in Canada. In D.C. Barnes (ed.), Moving to NAD’83: The New Address for Georeferenced Data in Canada. The Canadian Institute of Surveying and Mapping, Ottawa, 1990. P. 16–40.

For citation: Fazilova D.Sh., Magdiev Kh.N. Creating and updating of topographic maps height base in the new national spatial coordinate system: case Fergana valley. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: MSU, Faculty of Geography, 2021. V. 27. Part 2. P. 155–164. DOI: 10.35595/2414-9179-2021-2-27-155-164 (in Russian)