Mapping of vegetation communities of the subzone of dark coniferous forests of the South Sakhalin based on space surveys

DOI: 10.35595/2414-9179-2020-4-26-60-72

View or download the article (Rus)

About the Authors

Alexey A. Verkhoturov

The Institute of Marine Geology and Geophysics of the Far Eastern Branch of Russian Academy of Sciences, Center for collective use,
Nauki str., 1B, 693022, Yuzhno-Sakhalinsk, Russia,
E-mail: ussr-91@mail.ru

Vyacheslav A. Melkiy

The Institute of Marine Geology and Geophysics of the Far Eastern Branch of Russian Academy of Sciences, Laboratory of volcanology and volcano hazard,
Nauki str., 1B, 693022, Yuzhno-Sakhalinsk, Russia,
E-mail: vamelkiy@mail.ru

Abstract

Research was carried out improve efficiency of thematic mapping based on the recognition of plant communities in the subzone of dark coniferous forests for South of Sakhalin on multi-time satellite images of average resolution Landsat 8. We used reference samples of sites where geobotanical studies were conducted, for improve the quality of recognition during automated decryption. Experiments were conducted decode vegetation on singlechannel, synthesized multi-zone images obtained in different seasons of year. Spectral characteristics allow us identify plant communities in images based on morphological and physiological properties of various plants, which were quantified by reflection of vegetation in the spring image, and an integral indicator of photosynthetic activity of vegetation, which was evaluated by NDVI index calculated from spring and autumn images. Conceptual and methodological aspects of direct expert interpretation of vegetation from Landsat images by classification methods using ESRI ArcGIS raster algebra tools are considered. On example of study of vegetation communities of subzone of dark-coniferous forests of the South of Sakhalin with sufficient level of reliability, dark-coniferous forests, stone birch forest, cedar elfin formation, valley forests, thickets of Kuril bamboo, as well as residential zones, agricultural lands, areas devoid of vegetation as result of gravitational slope processes, wetlands, windfalls and man-made wasteland were identified. Decoding of vegetation cover from Landsat images showed that use of seasonal time series can significantly increase the reliability of the interpretation of most species of plant communities for the South of island. The research area is characterized by significant difference in altitude from 0 to 1100 m, as a result presence of high-altitude zone in the vegetation cover, which must be taken into account when decoding. Mapping is completed by performing automatic vectorization of raster layers and further generalization of vector polygons in accordance with selected map scale.

Keywords

decoding of aerospace images, thematic mapping, spectral ranges, fir-spruce forests, geodetic reference

References

  1. Baimaganbetova G.A., Golubeva E.I. Space images for mapping and monitoring the state of the green frame of Astana. InterCarto. InterGIS. GI support of sustainable development of territories in the context of global climate change: Proceedings of the International conference. Moscow: Publishing House “Scientific Library”, 2016. V. 22. Part 1. P. 370–380. DOI: 10.24057/2414-9179-2016-1-22-370-380 (in Russian, abs English).
  2. Bartalev S.A., Egorov V.A., Zharko V.O., Lupyan E.A., Plotnikov D.E., Khvostikov S.A. Current state and development prospects of satellite mapping methods of Russia’s vegetation cover. Current problems in remote sensing of the Earth from space, 2015. V. 12. No 5. P. 203–221 (in Russian).
  3. Ershov D.V., Gavrilyuk E.A., Karpukhina D.A., Kovganko K.A. A new map of the vegetation of Central European Russia based on high-resolution satellite data. Reports of the Academy of Sciences, 2015. V. 464. No 1. P. 251–253. DOI: 10.1134/S0012496615050105 (in Russian).
  4. Gong P., Wang J., Yu L., Zhao Y.C., Zhao Y., Liang L., Niu Z.G., Huang X.M., Fu H.H., Liu S., Li C., Li X., Fu W., Liu C., Xu Y., Wang X., Cheng Q., Hu L., Yao W., Zhang H., Zhu P., Zhao Z., Zhang H., Zheng Y., Ji L., Zhang Y., Chen H., Yan A., Guo J., Yu L., Wang L., Liu X., Shi T., Zhu M., Chen Y., Yang G., Tang P., Xu B., Giri C., Clinton N., Zhu Z., Chen J., Chen J. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013. V. 34. P. 2607-2654.
  5. Igarashi Y., Igarashi T. Late Holocene vegetation history in South Sakhalin, Northeast Asia. Japanese Journal of Ecology, 1998. V. 48. P. 231–244 (in Japanese).
  6. Igarashi Y., Igarashi T., Endo K., Yamada O., Nakagawa M., Sumita M. Vegetation history since the Late Glacial of Habomai bog and Ochiishi Cape bog, Nemuro peninsula, Eastern Hokkaido, North Japan. Japanese Journal of Historical Botany, 2001. V. 10. P. 67–79.
  7. Hajimuradova Z.M., Ataev Z.V., Bratkov V.V. Influence of modern climate changes on the dynamics of vegetation cover of the southern part of the foothill landscapes of Dagestan (based by materials of remote sensing of the Earth). Bulletin of Dagestan State Pedagogical University. Natural and Exact Sciences, 2017. V. 11. No 3. P. 95–103 (in Russian).
  8. Kabanov N.E. Botanical and geographical areas of Sakhalin. Bulletin of the Far Eastern Branch of the USSR Academy of Sciences, 1950. Iss. 1. P. 20–24 (in Russian).
  9. Kadochnikov A.A. Development of software and technology platform for satellite data processing complex. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 1. P. 388–397. DOI: 10.35595/2414-9179-2019-1-25-388-397 (in Russian, abs English).
  10. Kadochnikov A.A., Yakubailik O.E Software and technologies for geographic information system of Yenisei River basin. InterCarto. InterGIS. GI support of sustainable development of territories in the context of global climate change: Proceedings of the International conference. Moscow: Publishing House “Scientific Library”, 2016. V. 22. No 1. P. 111–119. DOI: 10.24057/2414-9179-2016-1-22-111-119 (in Russian, abs English).
  11. Korets M.A., Skudin V.M. Automated approach for mapping of forest inventory polygons on the base of space imagery and digital elevation model. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Petrozavodsk: KRC RAS, 2018. V. 24. No 2. P. 94–105. DOI: 10.24057/2414-9179-2018-2-24-94-105 (in Russian, abs English).
  12. Krestov P.V., Barkalov V.Yu., Taran A.A. Botanical and geographical zoning of Sakhalin Island. Flora and fauna of Sakhalin island. Materials of the international Sakhalin project. Vladivostok: Dalnauka, 2004. V. 1. P. 67–92 (in Russian).
  13. Melkiy V.A. Marchukov V.S., Igritsov M.A. Methodology of landscape automated interpretation of space images. Proceedings of the Higher Educational Institutions — Izvestia vuzov. Geodesy and aerophotosurveying, 1998. No 4–5. P. 68–82 (in Russian).
  14. Melkiy V.A., Verkhoturov A.A., Sabirov R.N., Bratkov V.V. Analysis of the state of forest lands on Sakhalin Island. Vestnik of North-Eastern Federal University. Series “Earth Science”, 2019. No 2 (14). P. 68–73. DOI: 10.25587/SVFU.2019.14.35448 (in Russian).
  15. Miyabe K., Tatewaki M. On the significance of the Schmidt Line in the plant distribution in Saghalien. Proceedings of the Imperial Academy, 1937. (Japan). V. 13. No 1. P. 24–26.
  16. Ohmann J.L., Gregory M.J., Henderson E.B., Roberts H.M. Mapping gradients of community composition with nearest-neighbour imputation: extending plot data for landscape analysis. Journal of Vegetation Science, 2011. V. 22. P. 660-676.
  17. Poberezhnaya T.M., Sabirov R.N., Kopanina A.V., Nyushko T.I., Shakhov I.M. Organization of environmental monitoring in the impact zone of the LNG plant in the South of Sakhalin. Vestnik of the Far East Branch of the Russian Academy of Sciences, 2009. No 6 (148). P. 60-67 (in Russian).
  18. Ris U.G. Basics of remote sensing. Moscow: Technosphera, 2006. 336 p (in Russian).
  19. Rogan J., Ziemer M., Martin D., Ratick S., Cuba N., De Lauer V. The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. Applied Geography, 2013. V. 45. P. 49-57.
  20. Schmidt F. Reisen im Amur-Lande und auf der Insel Sachalin, im Auftrage der Kaiserlich-Russischen geographischen Gesellschaft ausgefuehrt. Botanischer Theil. St.-Pétersbourg. Academie Imperiale Des Sciences, 1868. 227 s. (in German).
  21. Tolmachev A.I. Geobotanical zoning of Sakhalin Island. Moscow-Leningrad: Publishing House of the USSR Academy of Sciences, 1955. 78 p.

For citation: Verkhoturov A.A., Melkiy V.A. Mapping of vegetation communities of the subzone of dark coniferous forests of the South Sakhalin based on space surveys. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 4. P. 60–72. DOI: 10.35595/2414-9179-2020-4-26-60-72 (in Russian)