Assessment of the reclamation conditions of irrigated areas by geospatial analysis and recommendations for their improvement

DOI: 10.35595/2414-9179-2020-3-26-229-239

View or download the article (Eng)

About the Authors

Bakhtiyar Sh. Matyakubov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kori Niyaziy str., 39, 100000, Tashkent, Uzbekistan,
E-mail: bmatyakubov@inbox.ru

Zokhid J. Mamatkulov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kori Niyaziy str., 39, 100000, Tashkent, Uzbekistan,
E-mail: zohid3095@gmail.com

Rustam K. Oymatov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kori Niyaziy str., 39, 100000, Tashkent, Uzbekistan,
E-mail: rustam.oymatov@mail.ru

Ulugbek N. Komilov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kori Niyaziy str., 39, 100000, Tashkent, Uzbekistan,
E-mail: ulugbek.komilov1994@gmail.com

Guzal E. Eshchanova

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers (TIIAME),
Kori Niyaziy str., 39, 100000, Tashkent, Uzbekistan,
E-mail: guzaleshchanova1979@gmail.com

Abstract

This research focuses on determination of irrigation — drainage networks conditions, salinity of irrigated areas in Shavat district of Khorezm region (Uzbekistan) by geospatial analysis and giving recommendations for their elimination. Additionally, obtaining monthly ground truth data from observation wells and interpolate them with IDW interpolation algorithm methods of Geographic Information Systems (GIS) technologies in order to monitoring changes of groundwater level and mineralization in vegetation period of main agricultural crops are highlighted. Besides that, by using remote sensing technologies, the obtained data about the irrigation regime was determined in agricultural areas. As a result of the usage of GIS and RS methods, there have been created thematic maps on analysing salinity of soils, the actual condition of irrigation and collector of networks, actual level and mineralization of groundwater as well as their dynamic changes. On the basis of the obtained results, there have been given recommendations for improving the conditions of ameliorative arable lands on keeping the level of groundwater at a specified depth and cultivation of agricultural crops in periods of water scarcity.

Keywords

irrigation, drainage networks, irrigated area, geospatial analysis, remote sensing

References

  1. Bartier P.M., Keller C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers & Geosciences, 1996. V. 22. P. 795–799.
  2. Beisenboyev T.Sh., Bespalov N.F. Salinization dynamics of irrigated soils and cotton productivity. 1993. 160 p. (in Uzbek).
  3. Conrad C., Dech S., Dubovyk O., Fritsch S., Klein D., Löw F., Schorcht G., Schorcht G. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 2014. P. 63–74.
  4. Faurеs J., Svendsen M., Turral H. Reinventing irrigation. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London, Colombo: Earthscan and International Water Management Institute, 2007. Chapter 9. 233 p.
  5. Gao B.C. NDWI — A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ., 1996. V. 58. No 3. P. 257–266.
  6. Guan Y., Liu G., Wang J. Saline-alkali land in the Yellow River Delta: amelioration zonation based on GIS. Journal of Geographical Sciences, 2001. V. 11. P. 313–320. DOI: 10.1007/BF02892315.
  7. Harma S.K., Anjaneyulu D. Application of remote sensing and GIS in water resource management. International Journal of Remote Sensing, 1993. P. 3209–3220.
  8. Irmak S., Odhiambo L.O., Kranz W.L., Eisenhauer D.E. Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency. Lincoln, NB: University of Nebraska–Lincoln Extension, 2011. P. 1–7.
  9. Isabaev K., Khamidov M., Alieva D. Crop irrigation and productivity. Tashkent: Mehnat, 1991. 103 p. (in Uzbek).
  10. Khamidov M.H. Scientific bases of improvement of water use in the lower reaches of the Amu Darya river. Tashkent: SoyuzNIHI, 1993. 296 p. (in Russian).
  11. Matyakubov B.S. Meliorative condition of irrigated agriculture and its improvement. Scientific and technical information journal “Issues of land reclamation”, 2001. No 1–2. P. 84–87 (in Russian).
  12. Matyakubov B.S. Modern state of irrigated agriculture of Khorezm oasis. Moscow: Agrarian science, 2005. No 9. P. 227–229 (in Russian).
  13. Mirzajonov K.M., Malaboev N.E., Umarov D.D. Ameliorative condition of the Aral Sea area. Tashkent: Fan, 1993. 122 p. (in Uzbek).
  14. Pron’ko N.A., Korsak V.V. GIS-technologies in irrigation and irrigated agriculture in the dry steppe of the Volga region. Herald of the N.I. Vavilov Saratov State Agrarian Univ., 2013. V. 2. P. 54–57 (in Russian).
  15. Rakhimbayev F.M. Ameliorative condition of irrigated lands (on the example of the lower reaches of the Amu Darya). Tashkent, 1980. 104 p. (in Uzbek).

For citation: Matyakubov B.Sh., Mamatkulov Z.J., Oymatov R.K., Komilov U.N., Eshchanova G.E. Assessment of the reclamation conditions of irrigated areas by geospatial analysis and recommendations for their improvement. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 3. P. 229–239. DOI: 10.35595/2414-9179-2020-3-26-229-239