Building and precision assessment of regression models for determining of cereals’ and legumes’ crop yield based on Earth remote sensing data and climatic characteristics

DOI: 10.35595/2414-9179-2020-3-26-159-169

View or download the article (Rus)

About the Authors

Alexey S. Stepanov

Far Eastern Agriculture Research Institute,
Klubnaya str., 13, 680521, Vostochnoe, Khabarovsk Region, Russia,
E-mail: stepanxx@mail.ru

Tatiana A. Aseeva

Far Eastern Agriculture Research Institute,
Klubnaya str., 13, 680521, Vostochnoe, Khabarovsk Region, Russia,
E-mail: aseeva59@mail.ru

Konstantin N. Dubrovin

Computer Center of Far East Branch of the Russian Academy of Sciences,
Kim U Chena str., 65, 680000, Khabarovsk, Russia,
E-mail: nob_keeper_93@mail.ru

Abstract

Crop yields are strictly dependent from natural and climatic conditions of the growing region, in addition specific weather conditions in the southern part of the Far East necessitates the analysis of a large number of factors when building a predictive regression model. The article presents regression models for assessing the average productivity of the main crops in Chernigovsky district of Primorsky region: soybean, spring wheat, barley and oat. Between 2012 and 2018 the sown area of these crops ranged from 78 to 86 % of the total sown area in the Chernigovsky district. We used the indicators obtained from Earth remote sensing data (the maximum weekly NDVI per year, calculated from the mask of arable land in the Chernigovsky district) and meteorological characteristics (from 2008 to 2018): hydrothermal Selyaninov coefficient, the duration of the growing season, temperature and humidity of the upper soil layer, photosynthetically active radiation and the Budyko radiation index. Climatic characteristics of arable land, representing reanalysis data and combining ground based and remote observations, were obtained using the Vega–Science web–service. Also, we used data about sown area and gross crop in the Chernigovsky region from 2008 to 2018. It was found that average annual oat yield has the biggest coefficient of variation (31.5 %). The corresponding indicator for the remaining crops is in range from 16 to 18 %. The accuracy analysis of the obtained models showed that the average error of the model in period from 2008 to 2017 was 4.1 % for barley, 5.1 % for oat and spring wheat, and 5.4 % for soybean.

Keywords

crops, yield, climatic characteristics, regression model, remote sensing

References

  1. Aseeva T.A., Karacheva G.S., Lomakina I.V., Ruban Z.S. The influence of weather conditions on wheat crop and corn quality in the Middle Amur River Region. Herald of the FEB RAS, 2016. No 2. P. 64-70 (in Russian).
  2. Balabaykin V.F., Elkin K.V. Effects of climate change on grain productivity in Kostanay region. Agrarian Bulletin of the Urals, 2014. No 11. P. 54-59 (in Russian).
  3. Balaghi R., Tychon B., Eerens H., Jlibene M. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and Geoinformation, 2008. V. 10. Iss. 4. P. 438-452.
  4. Bereza O.V., Strashnaya A.I., Loupian E.A. On the possibility to predict the yield of winter wheat in the Middle Volga region on the basis of integration of land and satellite data. Current Problems in Remote Sensing of the Earth from Space, 2015. V. 12. No 1. P. 18-30 (in Russian).
  5. Bukhovets A.G., Semin E.A., Kostenko E.I., Iablonovskaya S.I. Simulation of the dynamics of the NDVI of winter wheat in the conditions of the Central Federal district. Herald of Voronezh State Agrarian University, 2018. V. 11. No 2. P. 186-199. DOI: 10.17238/issn2071-2243.2018.2.186 (in Russian).
  6. de la Casaa A., Ovandoa G.G., Bressanini L. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 2018. V. 146. P. 531-547.
  7. Gaso D.V., Berger A.B., Ciganda V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images. Computers and Electronics in Agriculture, 2019. V. 159. P. 75-83. DOI: 10.1016/j.compag.2019.02.026.
  8. Iizumi T., Shin Y., Kim W. Global crop yield forecasting using seasonal climate information from a multi-model ensemble. Climate Services, 2018. V. 11. P. 13-23. DOI: 10.1016/j.cliser.2018.06.003.
  9. Mkhabela M.S., Bullock P., Raj S., Wang S., Yang Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and Forest Meteorology, 2011. V. 151. Iss. 3. P. 385-393. DOI: https://doi.org/10.1016/j.agrformet.2010.11.012.
  10. Moiseenko L.M., Klykov A.G., Bogdan P.M. The ways of increase of wheat production in the conditions of Primorsky Krai. Grain Economy of Russia, 2014. No 3. P. 41-46.
  11. Onojeghuo A.O., Blackburn G.A., Huang J. Applications of satellite ‘hyper-sensing’ in Chinese agriculture: Challenges and opportunities. International Journal of Applied Earth Observation and Geoinformation, 2018. V. 64. P. 62-86.
  12. Panesh A.K., Tsalov G.V. Prediction of winter wheat productivity on the basis of geographic information system services. The Bulletin of the Adyghe State University, 2017. No 4. P. 175-180 (in Russian).
  13. Spivak L.F., Vitkovskaya I.S., Batyrbaeva M.J., Kauazov A.M. Analysis of spring wheat yield forecasts based on time series of statistical data and integrated vegetation indices. Current Problems in Remote Sensing of the Earth from Space, 2015. V. 12. No 2. P. 173-182 (in Russian).
  14. Stepanov A.S. Forecasting of crop yields based on Earth remote sensing data (using soybeans as an example). Computational Technologies, 2019. V. 24. No 6. P. 126-134. DOI: 10.25743/ICT.2019.24.6.015 (in Russian).
  15. Storchak I.G., Shestakova E.O., Eroshenko F.V. Influence of elements of technology on crop productivity and NDVI of wheat sowings. Agrarian Bulletin of the Urals, 2018. No 6. P. 64–68. DOI: 10.25930/awm3-sw92 (in Russian).
  16. Tolpin V.A., Loupian E.A., Bartalev S.A., Plotnikov D.E., Matveev A.M. Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service. Atmospheric and Oceanic Optics, 2014. V. 27. No 7. P. 581-586 (in Russian).
  17. Yakushev V.P., Dubenok N.N., Loupian E.A. Earth remote sensing technologies for agriculture: application experience and development prospects. Current Problems in Remote Sensing of the Earth from Space, 2019. V. 16. No 3. P. 11-23. DOI: 10.21046/2070-7401-2019-16-3-11-23 (in Russian).

For citation: Stepanov A.S., Aseeva T.A., Dubrovin K.N. Building and precision assessment of regression models for determining of cereals’ and legumes’ crop yield based on Earth remote sensing data and climatic characteristics. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 3. P. 159–169. DOI: 10.35595/2414-9179-2020-3-26-159-169 (in Russian)