Applicability of GRACE and GRACE-FO for monitoring water mass changes of the Aral Sea and the Caspian Sea

https://doi.org/10.35595/2414-9179-2020-2-26-443-453

View or download the article (Eng)

About the Authors

Lorant Földváry

Institute of Geoinformatics, Óbuda University,
Pirosalma str., 1–3, H-8000, Székesfehérvár, Hungary,
E-mail: foldvary.lorant@amk.uni-obuda.hu

Geodetic and Geophysical Institute, Research Centre of Astronomical and Earth Sciences, Hungarian Academy of Science,
Csatkai Endre str., 6–8, H-9400, Sopron, Hungary,
E-mail: foldvary.lorant@csfk.mta.hu

Victor Statov

Karakalpak State University,
A. Dosnazarov ko’shesi, 230112, Nukus, Uzbekistan,
E-mail: nukusgiscenter@gmail.com

Nizamatdin Mamutov

Karakalpak State University,
A. Dosnazarov ko’shesi, 230112, Nukus, Uzbekistan,
E-mail: nukusgiscenter@gmail.com

Abstract

The GRACE gravity satellite mission has provided monthly gravity field solutions for about 15 years enabling a unique opportunity to monitor large scale mass variation processes. By the end of the GRACE, the GRACE-FO mission was launched in order to continue the time series of monthly gravity fields. The two missions are similar in most aspects apart from the improved intersatellite range rate measurements, which is performed with lasers in addition to microwaves. An obvious demand for the geoscientific applications of the monthly gravity field models is to understand the consistency of the models provided by the two missions.

This study provides a case-study related consistency investigation of GRACE and GRACE-FO monthly solutions for the Aral Sea region. As the closeness of the Caspian Sea may influence the monthly mass variations of the Aral Sea, it has also been involved in the investigations. According to the results, GRACE-FO models seem to continue the mass variations of the GRACE period properly, therefore their use jointly with GRACE is suggested.

Based on the justified characteristics of the gravity anomaly by water volume variations in the case of the Aral Sea, GRACE models for the period March–June 2017 are suggested to be neglected. Though the correlation between water volume and monthly gravity field variations is convincing in the case of the Aral Sea, no such a correlation for the Caspian Sea could have been detected, which suggests to be the consequence of other mass varying processes, may be related to the seismicity of the Caspian Sea area.

Keywords

data acquisition, gravity field, gravimetry, temporal variation

References

  1. Andersen O., Berry P., Freeman J., Lemoine F.G., Luthcke S., Jakobsen K., Butts M. Satellite altimetry and GRACE gravimetry for studies of annual water storage variations in Bangladesh. Terrestrial, Atmospheric and Oceanic Sciences, 2008. V. 19. P. 47–52. DOI: 10.3319/TAO.2008.19.1-2.47(SA).
  2. Bettadpur S. Gravity recovery and climate experiment level-2 gravity field product user handbook. Center for Space Research at The University of Texas at Austin, 2018. Web resource: https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/L2-UserHandbook_v4.0.pdf (accessed 24.04.2020).
  3. Chambers D.P., Wahr J., Nerem R.S. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 2004. V. 31. L13310. 4 p. DOI: 10.1029/2004GL020461.
  4. Chen J.L., Pekker T., Wilson C.R., Tapley B.D., Kostianoy A.G., Cretaux J.-F., Safarov E.S. Long-term Caspian Sea level change. Geophysical Research Letters, 2017. V. 44. P. 6993–7001. DOI: 10.1002/2017GL073958.
  5. Chen J., Tapley B., Seo K.-W., Wilson C., Ries J. Improved quantification of global mean ocean mass change using GRACE satellite gravimetry measurements. Geophysical Research Letters, 2019. V. 46. P. 13984–13991. DOI: https://doi.org/10.1029/2019GL085519.
  6. Cretaux J-F., Jelinski W., Calmant S., Kouraev A., Vuglinski V., Bergé-Nguyen M., Gennero M.C., Nino F., Abarca Del Rio R., Cazenave A., Maisongrande P. SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Advances in Space Research, 2011. V. 47. P. 1497–1507.
  7. Crippa B., Sanso F. A quick look on the sea surface topography of the Mediterranean from the Geomed geoid and the ERS 1 geodetic mission. Proceedings of the International Centre for Mechanical Sciences Workshop on Data Acquisition and Analysis for Multimedia GIS. New York: Springer-Verlag, 1996. P. 237–247.
  8. Földváry L. Mass change acceleration in Antarctica from GRACE monthly gravity field solutions. Geodesy for Planet Earth, Proceedings of IAG Symposium in Buenos Aires. IAG Symposia Series. Berlin, Heidelberg: Springer-Verlag, 2012. V. 131. P. 591–597.
  9. Földváry L., Kemény M., Huang X.Z. First results of implementing satellite-borne gravity data to GIS and future perspectives. 10th International Symposium on Applied Informatics and Related Areas — AIS2015. Székesfehérvár, 2015. Paper P03.
  10. Gaybullaev B., Chen S.C., Gaybullaev D. Changes in water volume of the Aral Sea after 1960. Applied Water Science, 2012. V. 2. P. 285–291. DOI: https://doi.org/10.1007/s13201-012-0048-z.
  11. Hinze W.J., Aiken C., Brozena J., Coakley B., Dater D., Guy Flanagan G., Forsberg R., Hildenbrand T., Keller R.G., Kellogg J., Kucks R., Lee X., Mainville A., Morin R., Pilkington M., Plouff D., Ravat D., Roman D., Urrutia-Fucugauchi J., Véronneau M., Webring M., Winester D. New standards for reducing gravity data: the North American gravity database. Geophysics, 2005. V. 70. P. J25–J32.
  12. Hobbs S.F., Kimbell S.F., Coats J.S., Fortey N.J. BGS databases for mineral exploration: status in 2000. BGS Research Report RR/00/11. DTI Minerals Programme Publication No 6. Keyworth, Nottingham: British Geological Survey, 2000. 37 p.
  13. Ilk K.H., Flury J., Rummel R., Schwintzer P., Bosch W., Haas C., Schröter J., Stammer D., Zahel W., Miller H., Dietrich R., Huybrechts P., Schmeling H., Wolf D., Götze H.J., Riegger J., Bardossy A., Günter A., Gruber Th. Mass transport and mass distribution in the Earth system. Contributions of the new generation of satellite gravity and altimetry missions to the Geosciences. Proposal for a German priority research program, 2nd edition. München, Potsdam: GOCE-Projektbüro Deutschland, Techn. Univ. München, GeoForschungsZentrum Potsdam, München, Potsdam, 2005. 136 p.
  14. Kiss A., Földváry L. Seasonal hydrologic variations in the La Plata basin from GRACE gravity field models. Acta Geodynamica et Geomaterialia, 2017 (a). V. 14. No 2. P. 145–152.
  15. Kiss A., Földváry L. Uncertainty of GRACE-borne long periodic and secular ice mass variations in Antarctica. Acta Geodaetica et Geophysica, 2017 (b). V. 52. No 4. P. 497–510.
  16. Lehner B., Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 2004. V. 296. No 1–4. P. 1–22.
  17. Maslov I.A. The use of gravity for GIS data sets optimization. ISPRS Archives, 1996. V. XXXI. Part B3. P. 511–516.
  18. Shum C.K., Kuo C., Guo J. Role of Antarctic ice mass balances in present-day sea level change. Polar Science, 2008. No 2. P. 149–161. DOI: 10.1016/j.polar.2008.05.004.
  19. Singh A., Seitz F. Water storage variations in the Aral Sea from multi-sensor satellite data in comparison with results from GRACE gravimetry. 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2012. P. 3042–3045. DOI: 10.1109/IGARSS.2012.6350784.
  20. Singh A., Seitz F., Schwatke C. Inter-annual water storage changes in the Aral Sea from multimission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote Sensing of Environment, 2012. V. 123. P. 187–195.
  21. Sun F., Ma R. Hydrologic changes of Aral Sea: a reveal by the combination of radar altimeter data and optical images. Annals of GIS, 2019. V. 25. No 3. P. 247–261. DOI: 10.1080/19475683.2019.1626909.
  22. Swenson S., Wahr J. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 2006. V. 33. Iss. 8. L08402. 4 p. DOI: https://doi.org/10.1029/2005GL025285.
  23. Swenson S., Wahr J. Multi-sensor analysis of water storage variations of the Caspian Sea. Geophysical Research Letters, 2007. V. 34. Iss. 16. 5 p. L16401. DOI: 10.1029/2007GL030733.
  24. Tracey R., Nakamura A. Complete Bouguer anomalies for the Australian National Gravity Database. ASEG Extended Abstracts, 2010. V. 1. P. 1–3.
  25. Wahr J., Schubert G. Treatise on Geophysics. Time-Variable Gravity from Satellites. 1st edition. Oxford, Elsevier Ltd., 2007. P. 213—218.
  26. Wang C.X., Zhang M.H. Co-development of MapInfo and Surfer in regional gravity information system. Geophysical and Geochemical Exploration, 2008. V. 32. No 4. P. 445–447.
  27. Wang L., Khan S.A., Bevis M., van den Broeke M.R., Kaban M.K., Thomas M., Chen C. Downscaling GRACE predictions of the crustal response to the present-day mass changes in Greenland. Journal of Geophysical Research: Solid Earth, 2019. V. 124. P. 5134–5152. DOI: https://doi.org/10.1029/2018JB016883.
  28. Yuan D.N. GRACE Follow-On level-2 gravity field product user handbook. Jet Propulsion Laboratory. JPL D–103922, 2019. Web resource: https://podaac-tools.jpl.nasa.gov/drive/files/ allData/gracefo/docs/GRACE-FO_L2-UserHandbook_v1.0.pdf (accessed 24.04.2020).
  29. Zhang M.H., He H., Wang C.X. The launch of a large regional gravity information system in China. Applied Geophysics, 2011. V. 8. No 2. P. 170–175.

For citation: Földváry L., Statov V., Mamutov N. Applicability of GRACE and GRACE-FO for monitoring water mass changes of the Aral Sea and the Caspian Sea InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 443–453. DOI: 10.35595/2414-9179-2020-2-26-443-453