Analysis of the dynamics of anthropogenic changes in ecosystems of the Kem River catchment (White Sea basin) using Global Forest Change data

https://doi.org/10.35595/2414-9179-2020-2-26-396-407

View or download the article (Rus)

About the Author

Peter Yu. Litinsky

Northern Water Problems Institute, KRC RAS (Karelian Research Center of RAS),
A. Nevsky Ave, 50, 183030, Petrozavodsk, Republic of Karelia, Russia,
E-mail: litinsky@sampo.ru

Abstract

The analysis of changes in the catchment vegetation cover as a result of industrial development of its territory, primarily deforestation, was carried out. For processing Landsat images, the spectral space modeling method was used, which provides higher reliability of the classification results compared to traditional methods. The most significant changes in the catchment occurred from the 1930s (the beginning of large-scale logging), until the end of the 1990s. Significantly, by more than 60 %, the area of old-growth forests decreased, their large fragments remained only in nature protected areas, as well as around large lakes and along large rivers, due to the presence of water protection zones. In the period from 2000 to 2018 due to deforestation, the area of productive forests decreased even more. Nevertheless, by 2019 the occurrence of secondary reforestation on significant areas (up to 70 %) is noted, which indicates a sufficiently high regeneration potential of the catchment ecosystems. To restore the spatial structure of the forest cover in the period before the start of the Landsat 5 operation, the method of tracking the trajectories of reforestation successions in the spectral space was used. A comparison with the results of the Global Forest Change 2000—2018 data (loss/gain) showed almost complete coincidence in cuttings (loss), but the method of reforestation trajectories showed many times higher results in forest gain, since it reveals forest regeneration at a much earlier stage. The developed methodology will be applied on the catchments of other tributaries of the White Sea, and the results will be used as input to an environmental-socio-economic cognitive model that predicts the state of ecosystems under climate changes and economic priorities.

Keywords

boreal ecosystems, anthropogenic changes, White Sea basin, Global Forest Change data

References

  1. Biotic diversity of Karelia: conditions of formation, communities and species. Petrozavodsk: Karelian Research Centre of RAS. 2003. 244 p.
  2. Filatov N.N., Druzhinin P.V., Menshutkin V.V. Information support of investigations of environment and socio-economic conditions of White Sea and watershed. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 1. P. 122–137. DOI: 10.35595/2414-9179-2019-1-25-122-137 (in Russian, abs English).
  3. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V. Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. High-resolution global maps of 21st century forest cover change. Science, 2013. V. 342. Iss. 6160. P. 850–853. DOI: 10.1126/science.1244693.
  4. Litinsky P.Yu. 3D model of the spectral space of Landsat images as the basis of the boreal ecosystems geomatic model. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Petrozavodsk: KRC RAS, 2018. V. 24. Part 2. P. 116–128. DOI: 10.24057/2414-9179-2018-2-24-116-128 (in Russian, abs English).
  5. Litinsky P. Visualization of Landsat image spectral space as a method of boreal ecosystems geomatic modeling (on the example of Eastern Fennoscandia). Geoinformatics & Geostatistics: An Overview, 2018. V. 6. Iss. 3. DOI: 10.4172/2327-4581.1000183.
  6. Pavlov D.S., Bukvareva E.N. Climate-regulating functions of terrestrial ecosystems and “environmentally friendly” concept of nature management. Biology Bulletin Reviews, 2012. No 2. P. 105–123. DOI: 10.1134/S2079086412020053.
  7. Tolstikov A.V., Chernov I.A., Martynova D.M. Solution of the problem of necessary data for numerical modeling of processes in the White Sea in the interests of the development of the Arctic zone of the Russian Federation. Arctic: ecology and economics, 2018. P. 45–55. DOI: 10.25283/2223-4594-2018-2-45-55 (in Russian).
  8. Tranvik L.J., Downing J.A., Cotner J.B., Loiselle S.A., Striegl R.G., Ballatore T.J., Dillon P., Finlay K., Fortino K., Knoll L.B., Kortelainen P.L., Kutser T., Larsen S., Laurion I., Leech D.M., McCallister S.L., McKnight D.M., Melack J.M., Overholt E., Porter J.A., Prairie Y., Renwick W.H., Roland F., Sherman B.S., Schindler D.W., Sobek S., Tremblay A., Vanni M.J, Verchoor A.M., Wachenfeldt E., Weyhenmeyer G.A. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and oceanography, 2009. V. 54. Iss. 6. Part 2. P. 2298–2314. DOI: 10.4319/lo.2009.54.6_part_2.2298.
  9. Volkov A.D., Gromtzev A.N., Erukov G.V., Karavaev V.N., Kolomytsev V.A., Kurhinen Y.P., Rukosuev S.I., Sazonov S.V., Shelehov A.M. Ecosystems of north-west taiga landscapes (structure, dynamics). Petrozavodsk: KarRC RAS, 1995. 194 p. (in Russian).
  10. Zamolodchikov D.G., Kobyakov K.K., Kokorin A.O., Aleinikov A.A., Shmatkov N.M. Forest and climate. Moscow: World Wide Fund for Nature (WWF), 2015. 40 p. (in Russian).

For citation: Litinsky P.Yu. Analysis of the dynamics of anthropogenic changes in ecosystems of the Kem River catchment (White Sea basin) using Global Forest Change data InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 396–407. DOI: 10.35595/2414-9179-2020-2-26-396-407 (In Russian)