Analysis of the climatogenic dynamics of the Batagay thermodenudation “crater” using remote sensing data

DOI: 10.35595/2414-9179-2020-2-26-366-375

View or download the article (Rus)

About the Authors

Ruslan G. Aliev

Moscow State University named after M.V. Lomonosov,
Leninskie Gory, 1, 119991, Moscow, Russia,
E-mail: kazlukarkivan@yandex.ru

Aleksey A. Medvedkov

Moscow State University named after M.V. Lomonosov,
Leninskie Gory, 1, 119991, Moscow, Russia,

Moscow Region State University,
Vera Voloshina str., 24, 141014, Mytishchi, Moscow Region, Russia,

E-mail: a-medvedkov@bk.ru

Abstract

The article discusses the contribution of the climatogenic factor to the development of the Batagai thermo-denudation “crater” — the largest object in the world of thermo-denudation origin. The Batagai “crater” is the result of accelerated activation of exodynamic processes in the continuous permafrost zone of the Yansky Plateau (Northern Yakutia), located in the coldest region of Russia. According to satellite imagery from Landsat series satellites (Landsat-7 and Ladsat-8) for the period from 1999 to 2017. The rate of its growth was established taking into account the exposure factor for certain time intervals. Based on the selected satellite images, they were visually decrypted to highlight the “crater” edge, with reference to each year for the entire 18-year period. The results obtained were compared with climatic indicators for the corresponding time intervals. From climate data, those were analyzed that had positive dynamics and favored the development of thermo-denudation processes. So, for the Batagai “crater” area over the past 50 years, there has been a stable tendency towards an increase in temperature values (average summer by 1,6°C and average annual by 2,2°C) and the amount of precipitation (an increase in the annual amount of 25 mm due to summer autumn period). Over the past two decades, a certain correlation has been revealed between the growth rate of the Batagai “crater” and the dynamics of the main climatic indicators. During the analyzed period, it was established that the northwestern side of the “crater” is distinguished by the highest rate of degradation. Given the statistically revealed relationship, as well as the high ice content of the rocks (40–60 %) and their special sand vein structure, this allows us to consider the Batagai “crater” — a vivid indicator of climate warming.

Keywords

thermokarst, thermal erosion, cryolithozone, Batagai “crater”, indication of climate change

References

  1. Ashastina K., Schirrmeister L., Fuchs M., Kienast F. Palaeoclimate characteristics in interior Siberia of MIS 6-2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands. Climate of the Past, 2017. V. 13. P. 795–818. DOI: 10.5194/cp-13-795-2017.
  2. Geocryology of the USSR. Eastern Siberia and the Far East. Moscow: Nedra, 1989. 515 p. (in Russian).
  3. Kunitsky V.V., Syromyatnikov I.I., Schirrmeister L., Skachkov Yu.B, Grosse G., Wetterich S., Grigoriev M.N. Ice-rich permafrost and thermal denudation in the batagay area (Yana Upland, East Siberia). Earth’s Cryosphere, 2013. V. XVII. No 1. P. 56–68 (in Russian).
  4. Medvedkov A.A. Climatogenic dynamics of Siberian taiga landscapes in the Middle Yenisei river basin. Geography and Natural Resources, 2018. No 4. P. 122–129 (in Russian).
  5. Mokhov I.I. Modern climate change in the Arctic. Scientific and technical problems of Arctic exploration. Moscow: Nauka, 2014. P. 82–86.
  6. Murton Ju.B., Edwards M.E., Lozhkin A.V., Anderson P.M., Savvinov G.N., Bakulina N., Bondarenko O.V., Cherepanova M.V., Danilov P.P., Boeskorov V., Goslar T., Grigoriev S., Gubin S.V., Korzun Ju.A., Lupachev A.V., Tikhonov A., Tsygankova V.I., Vasilieva G.V., Zanina O.G. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, Northeast Siberia. Quaternary Research, 2017. V. 87. P. 314–330.
  7. Murzin Yu.A. Thermokarst in the Eastern Verkhoyansk mountains. Vestnik of North-Eastern Federal University. Series “Earth Sciences”, 2019. No 1 (13). P. 48–54. DOI: 10.25587/ SVFU.2019.13.27556 (in Russian).
  8. Murzin Yu.A., Rusakov V.G. Rock temperatures in the basin of Yana River. Cryolithozone and groundwater of Siberia. Part 1. Morphology of cryolithozone. Yakutsk: Melnikov Permafrost Institute (MPI) SB RAS, 1996. P. 45–56 (in Russian).
  9. Nekrasov I.A., Devyatkin V.N. Morphology of permafrost zone of the basin of Yana River and adjacent areas. Novosibirsk: Nauka, 1974. 72 p. (in Russian).
  10. Savvinov G.N., Danilov P.P., Petrov A.A., Makarov V.S., Boeskorov V.S., Grigoriev S.E. Environmental problems of the Verkhoyansky Region. Vestnik of North-Eastern Federal University. Series “Earth Sciences”, 2018. No 6 (68). P. 18–33. DOI: 10.25587/SVFU.2018.68.21798 (in Russian).
  11. Vasil’chuk Y.K., Vasil’chuk J.Y., Budantseva N.A., Vasil’chuk A.K., Trishin A.Yu. High resolution stable oxygen deuterium diagrams of ice wedges of Batagay yedoma, North of Central Yakutia. Doklady Akademii nauk (Reports of the Academy of Sciences), 2019. V. 487. No 6. P. 674–678. DOI: 10.31857/S0869-56524876674-678 (in Russian).

For citation: Aliev R.G., Medvedkov A.A. Analysis of the climatogenic dynamics of the Batagay thermodenudation “crater” using remote sensing data. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 366–375. DOI: 10.35595/2414-9179-2020-2-26-366-375 (in Russian)