Creation of the digital relief models based on open remote sensing data for improvement the borders of river basins in the Issyk-Kul Lake cavity

DOI: 10.35595/2414-9179-2020-2-26-349-365

View or download the article (Rus)

About the Authors

Akylbek U. Chymyrov

Kyrgyz State University of Construction, Transport and Architecture named after N. Isanov,
Maldybaev str., 34 b, 720020, Bishkek, Kyrgyz Republic,
E-mail: chymyrov@gmail.com

Dogdurbek Т. Chontoev

National Academy of Sciences of Kyrgyz Republic, Institute of Water Problems and Hydropower,
Frunze str., 533, 720033, Bishkek, Kyrgyz Republic,
E-mail: iwp@istc.kg

Bakyt M. Zhakeev

National Academy of Sciences of Kyrgyz Republic, Institute of Water Problems and Hydropower,
Frunze str., 533, 720033, Bishkek, Kyrgyz Republic,
E-mail: iwp@istc.kg

Abstract

The importance of Remote Sensing (RS) in various scientific and practical studies, including hydrology, is increasing today. New Global Digital Elevation Models (DEM), based on satellite imagery, serve as the main resources in hydrological research due to their openness or low cost, increasing accuracy and improved spatial resolution. The main aims of this work are study the capabilities of Global DEMs based on AW3D30, ASTER GDEM V003 and SRTMGML1 with 30 m spatial resolution in modeling basins of rivers and Issyk-Kul Lake in Kyrgyzstan and their comparative analysis. Topographic maps of the study area were used as sources of verification data when analyzing their spatial accuracy. The influence of the reference point heights above sea level on the accuracy and reliability of the models in high mountainous conditions was also studied. UTM, SK-42, Kyrg-06 and the Albers Equal-Area Conic coordinate systems were used in calculations of the lake basin area. The results of the study showed that the AW3D30 DEM has higher accuracy compared to other models and can be successfully used in modeling river basins in mountainous areas. The catchment areas of the Dzhergalan and Tyup rivers were modeled and calculated based on AW3D30, ASTER GDEM V003 and SRTMGML1 DEMs. The research results on boundaries and areas of the river basins in the lake depression indicate the need for further refinement based on modern remote sensing data, taking into account the differences in the geoid/quasigeoid models used and the reference point heights determined using satellite-based positioning and leveling methods.

Keywords

DEM, AW3D30, ASTER GDEM V003, SRTMGL1, basin

References

  1. Abdiev A., Chymyrov A. The Kyrgyz national reference system “Kyrg-06” and GNSS control centre “KyrPOS”. Proceedings of the Central Asia GIS Conference GISCA’13 “Connected regions: societies, economies and environments”, May 2–3, 2013, Almaty, Kazakhstan. Almaty, 2013. Р. 85–90.
  2. Chymyrov A., Bekturov A. Evaluation of the modern Earth Gravitational Models over territory of the Kyrgyz Republic. International Journal of Geoinformatics, 2019. V. 15. No 4. Р. 77–83.
  3. Congalton R.G., Green K. Assessing the accuracy of remotely sensed data — Principles and practices. 2nd edition. Boca Raton: CRC Press, Taylor & Francis Group, 2009. 183 p.
  4. Courty L.G., Soriano-Monzalvo J.C., Pedrozo-Acuña A. Evaluation of open-access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes. Journal of Flood Risk Management, 2019. V. 12. Iss. S1. DOI: 10.1111/jfr3.12550.
  5. Drisya J., Kumar D.S. Comparison of digitally delineated stream networks from different spaceborne digital elevation models: A case study based on two watersheds in South India. Arabian Journal of Geosciences, 2016. No 9 (710). DOI: 10.1007/s12517-016-2726-x.
  6. Fujita K., Suzuki R., Nuimura T., Sakai A. Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. Journal of Glaciology, 2008. V. 54. Iss. 185. P. 220–228.
  7. Jain A.O., Thaker T., Chaurasia A., Patel P., Singh A.K. Vertical accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3.1 of 30-m resolution with dual frequency GNSS for lower Tapi Basin India. Geocarto International, 2018. V. 33. Iss. 11. Р. 1237–1256. DOI: 10.1080/10106049.2017.1343392.
  8. Kolecka N., Kozak J. Assessment of the accuracy of SRTM C- and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure and Applied Geophysics, 2014. No 171 (6). P. 897–912. DOI: 10.1007/s00024-013-0695-5.
  9. Kozub Yu.I. The Digital elevation model improving for the landscape mapping of the Republic of Dagestan. Bulletin of Dagestan State Pedagogical University. Natural and Exact Sciences, 2018. V. 12. No 3. P. 96–102. DOI: 10.31161/1995-0675-2018-12-3-96-102 (in Russian).
  10. Maltsev K.A., Golosov V.N., Gafurov A.M. Digital elevation models and their use for assessing soil erosion rates on arable lands. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki (Proceedings of Kazan University. Natural Sciences Series), 2018. V. 160. No 3. P. 514–530 (in Russian).
  11. Mamatkanov D.M., Bazhanova L.V., Romanovsky V.V. Water resources of Kyrgyzstan at the current stage. Bishkek: Ilim, 2006. 276 p. (in Russian).
  12. Orifov R. Possibilities of integrated water resources management in the Republic of Tajikistan. Herald of the Technological University of Tajikistan, 2019. No 2 (37). P. 127–132 (in Russian).
  13. Patel A., Katiyar K.S., Prasad V. Performances evaluation of different open source DEM using differential global positioning system (DGPS). The Egyptian Journal of Remote Sensing and Space Sciences, 2016. No 19 (1). P. 7–16.
  14. Romanovsky V.V., Kuzmichenok V.A., Mamatkanov D.M., Podrezov A.O. Everything about Issyk-Kul Lake. Bishkek: Publishing House of the Kyrgyz-Russian Slavic University, 2005. 406 p. (in Russian).
  15. Savina A.M. International cooperation on the transboundary water resource management. Vestnik (Herald) of the Orenburg State University, 2014. No 4 (165). P. 117–121 (in Russian).
  16. Semakova E.R. Preliminary results of digital elevation modeling for some regions of the Central and Western Tian-Shan. Interexpo GEO-Siberia. Proceedings of the International Scientific Conference, 2015. V. 5. P. 99–103 (in Russian).
  17. Tavares da Costa R., Mazzoli P., Bagli S. Limitations posed by free DEMs in watershed studies: the case of River Tanaro in Italy. Frontiers of Earth Science, 2019. V. 7 (141). DOI: 10.3389/feart.2019.00141.
  18. Vinogradov A.V. Calculation of areas at different ellipsoids. Geodesy and Cartography, 2013. No 3. P. 11–15 (in Russian).
  19. Yildirim F., Kaya A. Selecting map projections in minimizing area distortions in GIS applications. Sensors, 2008. V. 8 (12). P. 7809–7817.
  20. Yue L., Shen H., Zhang L., Zheng X., Zhang F., Yuan Q. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2017. V. 123. January. P. 20–34. DOI: https:// doi.org/10.1016/j.isprsjprs.2016.11.002.
  21. Zhusupov N.A., Ha T.V., Dahal T.P., Ashyraliev T.A., Baktybek U.M. Quality assessment of free accessible Global DEMs. Vestnik KRSU (Herald of the Kyrgyz-Russian Slavic University), 2019. V. 19. No 8. P. 135–139 (in Russian).

For citation: Chymyrov A.U., Chontoev D.Т., Zhakeev B.M. Creation of the digital relief models based on open remote sensing data for improvement the borders of river basins in the Issyk-Kul Lake cavity. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 349–365. DOI: 10.35595/2414-9179-2020-2-26-349-365 (in Russian)