Comparison of pixel to pixel and object-based image analysis with using WorldView-2 satellite images of Yangiobod village of Syrdarya province

DOI: 10.35595/2414-9179-2020-2-26-313-321

View or download the article (Eng)

About the Authors

Aybek M. Arifjanov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers,
Kari Niyazi str., 39, 100000, Tashkent, Uzbekistan,
E-mail: obi-life@mail.ru

Shamshodbek B. Akmalov

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers,
Kari Niyazi str., 39, 100000, Tashkent, Uzbekistan,
E-mail: shamshodbekjon@mail.ru

Tursunoy U. Apakhodjaeva

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers,
Kari Niyazi str., 39, 100000, Tashkent, Uzbekistan,
E-mail: uqmonsamiev@mail.ru

Dilmira S. Tojikhodjaeva

Tashkent Institute of Irrigation and Agricultural Mechanization Engineers,
Kari Niyazi str., 39, 100000, Tashkent, Uzbekistan,
E-mail: zulxummorergasheva@mail.ru

Abstract

Currently, more than 300 satellites have been launched into space and providing us with information about the Earth and processes which happens in there. Those information is very useful in all branches. These satellites started to modify and modernize year by year. Especially after 2000, satellites of very high resolution were launched into space. These satellites are sending information with very high resolution. To improve the speed and accuracy of the analysis of these images, scientists have developed a number of methods and programs. As a result, users often find face to difficulties with knowing which method or program is most effective. In this article, analyzed many researches and scientific studies and analyzed WorldView-2 (WV2) images of the Syrdarya Province based on field experiments and outlined the advantages and disadvantages of the method and tool. WV2 images are very important and provide much relevant data for all image analysis. VHR of these images can increase the quality and possibilities of all analysis. But usage of these images globally has not developed because of their costs. Square of satellite image capturing is very little for global analysis. to do global analysis we need 100 s of this image. That is why scientists use this data more often for correlation or creating general methods. That is why it has not been used for regional and global analysis. In our research, we used GEOBIA’s eCognition software. The accuracy of this program is 95 %. In arid regions like Uzbekistan, we recommend optimal software, analyse steps and data.

Keywords

remote sensing, Syrdarya, sattelite, analyse, eCognition

References

  1. Blaschke T. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2010. V. 65. No 1. P. 2–16.
  2. Blaschke T., Hay G.J., Kelly M., Lang S., Hofmann P., Addink E., Feitosa R.Q., van der Meer F., van der Werff H., van Coillie F., Tiede D. Geographic object-based image analysis — towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 2014. V. 87. No 1. P. 180–191. DOI: 10.1016/j.isprsjprs.2013.09.014.
  3. Chen Z., Ning X., Zhang J. Urban land cover classification based on WorldView-2 image data. 2012 International Symposium on Geomatics for Integrated Water Resources Management (GIWRM), Lanzhou, Gansu, China. IEEE, 2012. DOI: 10.1109/GIWRM.2012.6349578.
  4. Dao P.D., Liou Y.A. Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data. Remote Sensing, 2015. V. 7. No 5. P. 5077–5097.
  5. Drǎguţ L., Tiede D., Levick Sh.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 2010. V. 24. No 6. P. 859–871.
  6. Gianinetto M., Rusmini M., Candiani G., Via D., Frassy F., Maianti P., Marches A., Nodari F.R., Dini L. Hierarchical classification of complex landscape with VHR pan-sharpened satellite data and OBIA techniques. European Journal of Remote Sensing, 2014. V. 47. No 1. P. 229–250.
  7. Giannini M.B., Parente C. An object based approach for coastline extraction from Quickbird multispectral images. International Journal of Engineering and Technology (IJET), 2014–2015. V. 6. No 6. P. 2698–2704.
  8. Gyuris M.P. Wp4-satellite remote sensing deliverable D4. Report on the limitations and potentials of satellite Eo data, 2010. DOI: http://www.impactmin.eu/downloads/impactmin_d41.pdf.
  9. Jiaa Y., Lib H.T., Gub H.Y., Hanb Y.S. Study on the Technology and Method of Land Cover Classification for Geographic National Conditions Surveying. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013. V. 1. No 1. P. 61–66.
  10. Khin M.M.L., Shaker A., Joksimovic D., Yan W.Y. The use of WorldView-2 satellite imagery to model urban drainage system with low impact development (LID) Techniques. Geocarto International, 2016. V. 31. No 1. P. 92–108.
  11. Kokje A.A., Gao J.A. A simplified approach for classifying urban land cover using data fusion. Proceedings of the SIRC NZ — GIS and Remote Sensing Research Conference, Dunedin, New Zealand, 2013. 7 p. DOI: http://hdl.handle.net/10523/4240.
  12. Leonhard G., Ferrè N. Master in space applications for early warning and response to emergencies. Final report. 5 p. Web resource: https://pdfslide.net/documents/master-in-space-applications-for-early-warning-and-1-master-in-space-applications.html (accessed 08.06.2015).
  13. Nath R.K., Deb S.K. Water-body area extraction from high resolution satellite images — an Introduction, Review, and Comparison. International Journal of Image Processing (IJIP), 2010. V. 3. Iss. 6. P. 353–372.
  14. Navulur K. Multispectral image analysis using the object-oriented paradigm. Boca Raton, Florida, USA: CRC Press, 2006. 204 p. DOI: https://doi.org/10.1201/9781420043075.
  15. Navulur K., Pacifici F., Baugh P. Trends in optical commercial remote sensing industry [industrial profiles]. IEEE Geoscience and Remote Sensing Magazine, 2013. V. 1. Iss 4. P. 57–64. DOI: 10.1109/MGRS.2013.2290098.
  16. Özdemir M. Uydu görüntülerinden nesne yönelimli yöntemlerle özellik çıkarımı (Feature extraction from satellite images with object oriented methods). Abstract of D diss. Selçuk Üniversitesi Fen Bilimleri Enstitüsü (Selcuk University Institute of Science), 2013. 81 p. (in Тurkish).
  17. Peña-Barragán J.M., Ngugi M.K., Plant R.E., Six J. “Object-based crop identification using multiple vegetation indices, textural features and crop phenology.” Remote Sensing of Environment, 2011. V. 115. No 6. P. 1301–1316. DOI: 10.1016/j.rse.2011.01.009.
  18. Platt R.V. Wildfire hazard in the home ignition zone: An object-oriented analysis integrating LiDAR and VHR satellite imagery.” Applied Geography, 2014. V. 51. P. 108–117. DOI: https://doi.org/10.1016/j.apgeog.2014.03.011.
  19. Verőné Wojtaszek M., Ronczyk L. Object-based classification of urban land cover extraction using high spatial resolution imagery. Proceedings of International Scientific Conference on Sustainable Development & Ecological Footprint, Sopron, Hungary, 2012. 7 p.
  20. Xiaohe Z., Liang Z., Jixian Z., Huiyong S. An object-oriented classification method of high resolution imagery based on improved AdaTree. 35th International Symposium on Remote Sensing of Environment (ISRSE35). IOP Conference Series: Earth and Environmental Science, 2014. IOP Publishing. V. 17 (1): 012212. DOI: http://iopscience.iop.org/1755-1315/17/1/012212.
  21. Zhou X., Jancsó T., Chen Ch., Wojtaszek Verőné M. Urban land cover mapping based on object oriented classification using WorldView2 satellite remote sensing images. International Scientific Conference on Sustainable Development & Ecological Footprint, Sopron, Hungary, 2012. 10 p.

For citation: Arifjanov A.M., Akmalov Sh.B., Apakhodjaeva T.U., Tojikhodjaeva D.S. Comparison of pixel to pixel and object-based image analysis with using WorldView-2 satellite images of Yangiobod village of Syrdarya province. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 313–321. DOI: 10.35595/2414-9179-2020-2-26-313-321