Getis-Ord Gi* statistics for hydrocarbons content analysis in the Tromjegan river basin

View or download the article (Rus)

About the Authors

Valentina A. Dobryakova

Tyumen State University,
Volodarskiy str., 6, 625003, Tyumen, Russia,

Natalya N. Moskvina

Tyumen State University,
Volodarskiy str., 6, 625003, Tyumen, Russia,

Andrey B. Dobryakov

Tyumen Regional Division of the Ural Main Branch of the Central Bank of the Russian Federation,
Volodarskiy str., 48, 625000, Tyumen, Russia,

Lilia F. Zhegalina

Immanuel Kant Baltic Federal University,
Proletarskaya str., 131, 236029, Kaliningrad, Russia,

Ildar R. Idrisov

Tyumen State University,
Volodarskiy str., 6, 625003, Tyumen, Russia,


The information content and effectiveness of ecological research of the territory can be improved using the methods of multivariate analysis and mapping of the results. The article presents the analysis and mapping results of spatial and temporal trends of hydrocarbon pollution in the Tromjegan river basin for the period 2006–2018 using the tools of ArcGIS Pro. The informational and basic research is the data of local environmental monitoring of licensed blocks of the Khanty-Mansiysk Autonomous Okrug — Ugra.

Pollution analysis was carried out on the basis of a detailed study of the geography of the source data using statistical calculations (minimum, average, maximum distances between sampling points, Getis-Ord Gi* index). Thematic maps were constructed using data averaged over the year. The spatial and temporal dynamics of hydrocarbons concentration in surface waters for 2006–2018 is analyzed using the “Hot Spot Analysis” tool. A temporary cluster section of hydrocarbons average annual concentration according to the Getis-Ord Gi* indicator allowed us to identify trends in the dynamics of indicators. Maps of hydrocarbons average annual concentration were compiled and the results of a spatial-temporal analysis of hydrocarbons average annual concentration in surface waters were presented.

The identification of patterns in large arrays of long-term data and the consideration of the spatial component are necessary elements of modern environmental research. Analysis of the time series of average annual concentrations in the Tromjegan river basin showed a clear trend in the dynamics of hydrocarbon pollution. The findings can be the basis for making managerial decisions in the environmental monitoring of licensed blocks of the Khanty-Mansiysk Autonomous Okrug — Ugra.


Getis-Ord Gi* statistics, space-time analysis, GIS, analysis of hot spots genesis, hydrocarbon water pollution


  1. Arkhipova O.E., Chernogubova E.A. “Hot spots” of the incidence of malignant neoplasms in the Rostov region: spatio-temporal analysis. Ecology. Economy. Computer science. Series: System analysis and modeling of economic and ecological systems. Rostov-on-Don: Federal State Budgetary Institution “Federal Research Center Southern Scientific Center of the Russian Academy of Sciences”, 2019. V. 1. Nо 4. P. 207–211 (in Russian).
  2. Arkhipova O.E., Chernogubova E.A. Spatial-temporal analysis of the distribution of prostate cancer (PCa) in the regions of the Rostov region. Proceedings of the III All-Russian Conference on Molecular Oncology. Advances in Molecular Oncology. Moscow: ABV-Press, 2017. V. 4. No S4. P. 14 (in Russian).
  3. Chainey S. Advanced hotspot analysis: spatial significance mapping using Gi*. UCL Jill Dando Institute of Crime Science. London: University College London, 2010.
  4. Crossman N.D., Bryan B.A. Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. Ecological Economics, 2009. No 68 (3). P. 654–668. DOI: 10.1016/j.ecolecon.2008.05.003.
  5. De Groot R.S., Alkemade R., Braat L. Hein L., Willemen L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 2010. No 7 (3). P. 260–272. DOI: 10.1016/j.ecocom.2009.10.006.
  6. Ding L., Chen K.L., Liu T., Chen S.G., Wang X. Spatial-temporal hotspot pattern analysis of provincial environmental pollution incidents and related regional sustainable management in China in the period 1995–2012. Sustainability, 2015. No 7. P. 14385–14407. DOI: 10.3390/su71014385.
  7. Dobryakova V.A., Moskvina N.N., Zhegalina L.F. Statistics Getis-Ord Gi* in adaptation of perennial hydrocarbon content data in river Bolshoy Balyk basin. Geodesy and Cartography, 2020. V. 81. No 5. DOI: 10.22389/0016-7126-2020-959 (in Russian).
  8. Getis A., Ord J.K. Local spatial statistics: An overview. In Spatial Analysis: Modeling in GIS Environment. New York, NY, USA: John Wiley & Sons Inc., 1996. P. 261–278.
  9. Griffith D., Getis A. Spatial filtering. Encyclopedia of GIS. Springer, Cham impacts of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning, 2017. No 80. P. 345–361.
  10. Hart T.C., Zandbergen P.A. Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing: An International Journal of Police Strategies and Management, 2014. V. 37. P. 305–323.
  11. Korennoy F.I., Petrova O.N., Gulenkin V.M., Karaulov A.K. The use of ArcGIS analytical tools to identify spatial and temporal patterns of the spread of especially dangerous diseases of farm animals. GIS and Public Health, 2017. No 1 (80). Electronic journal: (in Russian).
  12. Lezin V.A. The rivers of the Khanty-Mansiysk Autonomous Okrug. Reference guide. Tyumen: Vector Book, 1999. 160 p. (in Russian).
  13. Maes J., Teller A., Erhard M., Liquete C., Braat L., Berry P., Egoh B., Puydarrieux P., Fiorina C., Santos F., Paracchini M.L., Keune H., Wittmer H., Hauck J., Fiala I., Verburg P.H., Conde S., Schagner J.P., San Miguel J., Estreguil C., Ostermann O., Barredo J.I., Pereira H.M., Stott A., Laporte V., Meiner A., Olah B., Royo Gelabert E., Spyropoulou R., Petersen J.E., Maguire C., Zal N., Achilleos E., Rubin A., Ledoux L., Brown C., Raes C., Jacobs S., Vandewalle M., Connor D., Bidoglio G. Mapping and assessment of ecosystems and their services: An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020. Luxembourg: Publications Office of the European Union, 2013. 57 p. DOI: 10.2788/720519.
  14. Moskvina N.N., Kozin V.V. Landscape zoning of the Khanty-Mansiysk Autonomous Okrug. Khanty-Mansiysk: Polygraphist, 2001. 40 p. (in Russian).
  15. Peng J.F., Song Y.H., Yuan P., Xiao S.H., Han L. A novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks. Journal of Environmental Sciences — China, 2013. No 25. P. 1441–1449.
  16. Rashevsky N.M., Sangepov B.Kh., Sinitsyn A.A., Barikhashvili V.R. Decision support for monitoring atmospheric air quality in residential areas. Bulletin of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture, 2019. Iss. 2 (75). P. 206–214 (in Russian).
  17. Theory of statistics: Textbook. Moscow: Infra, 2005. 476 p. (in Russian).
  18. Wubuli A., Xue F., Jiang D., Yao X., Upur H., Wushouer Q. Socio-demographic predictors and distribution of pulmonary tuberculosis (TB) in Xinjiang, China: A spatial analysis. PLoS One, 2015. V. 10. P. 1–22.

For citation: Dobryakova V.A., Moskvina N.N., Dobryakov A.B., Zhegalina L.F., Idrisov I.R. Getis-Ord Gi* statistics for hydrocarbons content analysis in the Tromjegan river basin InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 151–160. DOI: 10.35595/2414-9179-2020-2-26-151-160 (In Russian)