Circular economy and sustainable development in the EU — some aspects and trends Online web map service for monitoring of snow cover and hazardous hydrological events in the Kama river basin: the features of development and content

DOI: 10.35595/2414-9179-2020-2-26-5-19

View or download the article (Rus)

About the Authors

Sergey V. Pyankov

Perm State University, Department of Cartography and Geoinformatics,
Bukirev str., 15, 614990, Perm, Russia,
E-mail: gis@psu.ru

Rinat K. Abdullin

Perm State University, Department of Cartography and Geoinformatics,
Bukirev str., 15, 614990, Perm, Russia,
E-mail: gis@psu.ru

Andrey N. Shikhov

Perm State University, Department of Cartography and Geoinformatics,
Bukirev str., 15, 614990, Perm, Russia,
E-mail: gis@psu.ru

Anastasia V. Semakina

Perm State University, Department of Cartography and Geoinformatics,
Bukirev str., 15, 614990, Perm, Russia,
E-mail: gis@psu.ru

Abstract

The development of web-GIS for operational visualization and analysis of the hydrological threats is one of the main ways to improve the monitoring and forecasting of hazardous hydrological events (HHE). This paper considers the structure and content of the online web map service for monitoring snow cover and HHE in the Kama river basin (http://hydromonitor.maps.psu.ru/). The regional departments of the Russian hydro-meteorological service, Kama Basin Water Administration and other institutions interested in operational obtaining of the hydrological information can successfully use the developed web map service. Basic and thematic layers are distinguished in the structure of the web map service. Thematic layers include daily updated monitoring and modelling outputs and other data (that does not require regular updating). The layers of river basins and observational network (weather stations and gauging stations) of the Russian hydro-meteorological service are the information basis of the service. The GIS layers of flooded settlements, locations of ice jams formation on the rivers, HHE and flood zones in floodplains have been created on the basis of the analysis of scientific publications, hydrological gauges, flood damage reports in media and satellite images. The database of HHE includes 97 records (75 HHE), which happened in 63 settlements. Most of HHE causing significant damage were occurred in the Belaya river basin, and the largest areas of flooded floodplain are also located in the same basin. Also, the simulated characteristics of snow cover (snow water equivalent, meltwater outflow and snow-covered area) are published on the web map service. The input data for calculations are daily forecasts of the air temperature, humidity, wind speed and precipitation by numerical weather prediction models ICON (Germany) and GFS (USA), as well as weather station data. The data are updated daily, and their spatial resolution is 3 km.

Keywords

hazardous hydrological events, spring flood, rain flood, GIS database, online web map service

References

  1. Borsch S.V., Simonov Yu.A., Khristoforov A.V. Flood forecasting and early warning system on the rivers of the Black Sea coast of the Caucasus and the Kuban basin. Proceedings of the Hydrometeorological Center of the Russian Federation. Spec. Issue 356, 2015. 247 p. (in Russian).
  2. Danielson J.J., Gesch D.B. Global multi-resolution terrain elevation data 2010 (GMTED2010). Open-File Report 2011-1073. Reston, Virginia: U.S. Geological Survey, 2011. 26 p.
  3. Deryugina V.V., Borsch S.V., Krovotyntsev V.A., Simonov Yu.A. Web-GIS system for monitoring and forecasting of the hydrological situation in the basins of large rivers of Russia using ground-based and satellite data. Abstracts of the XVII All-Russian Open Conference “Current Problems in Remote Sensing of the Earth from Space”. Moscow: Space Research Institute of RAS, 2019. P. 84 (in Russian).
  4. Frolov A.V., Asmus V.V., Borshch S.V., Vil’fand R.M., Zhabina I.I., Zatyagalova V.V., Krovotyntsev, V.A., Kudryavtseva O.I., Leont’eva E.A., Simonov Y.A., Stepanov Y.A. GIS-Amur system of flood monitoring, forecasting, and early warning. Russian Meteorology and Hydrology, 2016. V. 41 (3). P. 157–169. DOI: 10.3103/S1068373916030018.
  5. Frolova N.L., Kireeva M.B., Magrickiy D.V., Bologov M.B., Kopylov V.N., Hal J., Semenov V.A., Kosolapov A.E., Dorozhkin E.V., Korobkina E.A., Rets E.P., Akutina Y., Djamalov R.G., Efremova N.A., Sazonov A.A., Agafonova S.A., Belyakova P.A. Hydrological hazards in Russia: origin, classification, changes and risk assessment. Natural Hazards, 2017. V. 88. P. 103–131. DOI: 10.1007/s11069-016-2632-2.
  6. Napolitano E., Marchesini I., Salvati P., Donnini M., Bianchi C., Guzzetti F. LAND-deFeND — An innovative database structure for landslides and floods and their consequences. Journal of Environmental Management, 2018. V. 207. P. 203–218. DOI: 10.1016/j.jenvman.2017.11.022.
  7. Olthof I. Mapping seasonal inundation frequency (1985–2016) along the St-John river, New Brunswick, Canada using the Landsat Archive. Remote Sensing, 2017. V. 9 (2). Art. No 143. DOI: 10.3390/rs9020143.
  8. Presnyakova A.N., Pisarev A.V., Khrapov S.S. The study of the dynamics of flooding of the Volga-Akhtuba floodplain based on space monitoring. Bulletin of Volgogradsky State University. Series 1. Mathematics. Physics, 2017. V. 1 (38). P. 66–74 (in Russian).
  9. Pyankov S.V., Kalinin N.A., Shikhov A.N., Abdullin R.K., Bykov A.V. Simulation of snow cover formation and melt with publication of the output data on the web map service (on the example of Kama river basin). IOP Conference Series: Earth and Environmental Science, 2019. V. 321. Art. No 012009. DOI: 10.1088/1755-1315/321/1/012009.
  10. Pyankov S.V., Shikhov A.N., Kalinin N.A., Sviyazov E.M. A GIS-based modeling of snow accumulation and melt processes in the Votkinsk reservoir basin. Journal of Geographical Sciences, 2018. V. 28 (2). P. 221–237. DOI: 10.1007/s11442-018-1469-x.
  11. Pyankov S.V., Shikhov A.N., Mikhaylyukova P.G. Simulation of snow accumulation and melting in the Kama river basin using data from global prognostic models. Ice and Snow, 2019. V. 59. No 4. P. 494–508. DOI: 10.15356/2076-6734-2019-4-423 (in Russian).
  12. Qi S., Brown D.G., Tian Q., Jiang L., Zhao T., Bergen K.M. Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. GIScience & Remote Sensing, 2009. V. 46 (1). P. 101–127. DOI: 10.2747/1548-1603.46.1.101.
  13. Razumov V.V., Kachanov S.A., Razumova N.V., Chirikov A.G., Shagin S.I., Bekkiev M.Yu., Glushko A.Ya., Pchelkin M.I., Frolko S.V. The extent and hazard of floods in the regions of Russia. Moscow: Civil Defense and Disaster Management All-Russian Science Research Institute, 2018. 364 p. (in Russian).
  14. Tolstykh M.A. Global atmospheric models: current status and development prospects. Proceedings of the Hydrometeorological Center of Russia, 2016. V. 1. P. 5–33 (in Russian).
  15. Wang X., Wang J., Che T., Huang X., Hao X., Li H. Snow cover mapping for complex mountainous forested environments based on a multi-index technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018. V. 11 (5). P. 1433–1441. DOI: 10.1109/JSTARS.2018.2810094.

For citation: Pyankov S.V., Abdullin R.K., Shikhov A.N., Semakina A.V. Circular economy and sustainable development in the EU — some aspects and trends Online web map service for monitoring of snow cover and hazardous hydrological events in the Kama river basin: the features of development and content. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 2. P. 5–19. DOI: 10.35595/2414-9179-2020-2-26-5-19 (in Russian)