Toward the capabilities of integration of the cloud-based spatial data infrastructures and universal desktop geographic information systems, case study of Google Earth Engine and QGIS

DOI: 10.35595/2414-9179-2020-1-26-421-433

View or download the article (Rus)

About the Authors

Evgeny A. Panidi

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
10th line of Vasilievsky island, 31–33, 199178, St. Petersburg, Russia;
E-mail: panidi@ya.rue.panidi@spbu.ru

Ivan S. Rykin

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
10th line of Vasilievsky island, 31–33, 199178, St. Petersburg, Russia;
E-mail: ivan.rykin94@gmail.comst059068@student.spbu.ru

Abstract

The paper describes briefly content and results of experiments produced to test possibilities and effectiveness of integration and common use of the Google Earth Engine public cloud geospatial computing platform and QGIS desktop geographic information system. The experiments were focused on probation of Google Earth Engine data unloading and visualizing using QGIS graphical user interface instead of standard Web-browser-based visualizing. Final goal of the experiments was to formalize the principles of architecture of the specialized QGIS module developed by authors. The module is planned as a tool for vegetation index time-series mapping and analysis aimed on estimation of the growing season parameters (i.e., time frames, length, etc.) with 1-day time resolution.

The project context is formed by long-going research collaboration devoted to the investigation of interdependencies in dynamics and change of climate parameters and parameters of vegetation cover. In earlier studies, authors detected that analysis of quantitative parameters of the changing climate in northern regions have to be conducted for spring, summer and autumn growing seasons separately, as these periods are characterized by significant differences in plant vegetating conditions. However, due to the sparseness of ground observation network in northern regions of Russia (which are discovered as the area of interest by the authors), the issue of detailed estimation of the spatial distribution and differentiation of growing season framing dates and other parameters becomes almost unresolvable. Vegetation indexes mapping and analysis can be applied to solve this problem, but implementation of cloud computing facilities is needed in the case of 1-day time resolution of initial satellite imagery used to compute vegetation indexes, due to the huge size of processed data. In such a context authors touch the issue of integration of the cloud platform computational power with the desktop GIS analysis diversity.

Keywords

Google Earth Engine, QGIS, remote sensing data processing

References

  1. Agapiou A. Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications. International Journal of Digital Earth, 2017. V. 10. Iss. 1. Р. 85–102. DOI: 10.1080/17538947.2016.1250829.
  2. Delbart N.J-P., Kergoats L., Le Toan T., Lhermitte J., Picard G. Determination of phenological dates in boreal regions using Normalized Difference Water Index. Remote Sensing of Environment, 2005. V. 97. Iss. 1. Р. 26–38. DOI: 10.1016/j.rse.2005.03.011.
  3. Gao B.C. NDWI — a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996. V. 58. Iss. 3. Р. 257–266.
  4. Goetz S.J., Mack M.C., Gurney K.P., Randerson J.T., Houghton R.A. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environmental Research Letters, 2007. V. 2. No 4. Article ID: 045031. 9 p. DOI: 10.1088/1748-9326/2/4/045031.
  5. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2017. V. 202. P. 18–27. DOI: 10.1016/j.rse.2017.06.031.
  6. Jia G.J., Epstein H.E., Walker D.A. Vegetation greening in the Canadian Arctic related to decadal warming. Journal of Environmental Monitoring, 2009. No 11. P. 2231–2238.
  7. Medvedeva M.A., Bartalev S.A., Lupyan E.A., Matveev A.M., Tolpin V.A., Poida A.A. The possibility of estimation of the growing season onset basing on satellite and meteorological data. Current Problems in Remote Sensing of the Earth from Space, 2008. V. 5. Iss. 2. P. 313–321 (in Russian).
  8. Miklashevich T.S., Bartalev S.A. Method for estimating vegetation cover phenological characteristics. Current Problems in Remote Sensing of the Earth from Space, 2016. V. 13. Iss. 1. P. 9–24. DOI: 10.21046/2070-7401-2016-13-1-9-24 (in Russian).
  9. Panidi E. Fog Computing perspectives in connection with the current geospatial standards. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017. V. XLII-3/W2. P. 171–174. DOI: 10.5194/isprs-archives-XLII-3-W2-171-2017.
  10. Panidi E., Tsepelev V. NDWI-based technique for detection of change dates of the growing seasons in Russian Subarctic. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017. V. XLII-3/W2. P. 179–182. DOI: 10.5194/isprs-archives-XLII-3-W2-179-2017.
  11. Rykin I., Shagnieva A., Panidi E., Tsepelev V. Highly discrete mapping of the growing season time frames and time dynamics. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019. V. XLII-3/W8. P. 357–361. DOI: 10.5194/isprs-archives-XLII-3-W8-357-2019.
  12. Sekhon N.S., Hassan Q.K., Sleep R.W. A remote sensing-based system to predict early spring phenology over boreal forest. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010. V. XXXVIII (1). 5 p.
  13. Semenova I.G. Synoptic and climatic conditions of formation of arid phenomena in Ukraine. Diss. … doct. geogr. sciences. Odessa: Odessa State Ecological University, 2015. 296 p. (in Ukrainian).
  14. Stow D.A., Hopea A., McGuireb D., Verbylac D., Gamond J., Huemmriche F., Houstond S., Racinef C., Sturmg M., Tapeh K., Hinzman L., Yoshikawai K., Tweediej C., Noylek B., Silapaswanl C., Douglasm D., Grifthn B., Jiao G., Epsteino H., Walkerp D., Daeschnera S., Petersena A., Zhouq L., Myneni R. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sensing of Environment, 2004. No 89. P. 281–308.
  15. Tsepelev V., Panidi E., Torlopova N., Bobkov A. Study of climate change at the north of European Russia using land cover data. International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, SGEM, 2015. V. 2. Iss. 3. P. 529–536. DOI: 10.5593/SGEM2015/B32/S14.071.
  16. Vermote E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V006. 2015. DOI: 10.5067/MODIS/MOD09A1.006.
  17. Vermote E., Wolfe R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V006 (Data set). 2015. DOI: 10.5067/MODIS/MOD09GA.006.
  18. Vos K., Splinter K.D., Harley M.D., Simmons J.A., Turner I.L. Coast Sat: a Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 2019. V. 122. Article No 104528. DOI: 10.1016/j.envsoft.2019.104528.
  19. Warren M.S., Brumby S.P., Skillman S.W., Kelton T., Wohlberg B., Mathis M., Chartrand R., Keisler R., Johnson M. Seeing the Earth in the Cloud: processing one petabyte of satellite imagery in one day. IEEE Applied Imagery Pattern Recognition Workshop, 2015 (AIPR 2015). Article No 7444536. DOI: 10.1109/AIPR.2015.7444536.
  20. Yalew S.G., van Griensven A., van der Zaag P. AgriSuit: a web-based GIS-MCDA framework for agricultural land suitability assessment. Computers and Electronics in Agriculture, 2016. V. 128. P. 1–8. DOI: 10.1016/j.compag.2016.08.008.

For citation: Panidi E.A., Rykin I.S. Toward the capabilities of integration of the cloud-based spatial data infrastructures and universal desktop geographic information systems, case study of Google Earth Engine and QGIS. InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2020. V. 26. Part 1. P. 421–433. DOI: 10.35595/2414-9179-2020-1-26-421-433 (in Russian)