Change of glaciers in the Himalayas and Southern Siberia according to Landsat

https://doi.org/10.35595/2414-9179-2019-2-25-146-160

View or download the article (Rus)

About the Authors

Aleksandr D. Kitov

V.B. Sochava Institute of Geography SB RAS,
Ulan-Batorskay st., 1, 664033, Irkutsk, Russia,
E-mail: kitov@irigs.irk.ru

Viktor M. Pluysnin

V.B. Sochava Institute of Geography SB RAS,
Ulan-Batorskay st., 1, 664033, Irkutsk, Russia,
E-mail: plyusnin@irigs.irk.ru

Irina N. Bilichenko

V.B. Sochava Institute of Geography SB RAS,
Ulan-Batorskay st., 1, 664033, Irkutsk, Russia,
E-mail: bilichenco@irigs.irk.ru

Abstract

We consider the local peculiarities of glaciers. We have researched the glaciers of separate mountain ranges in Asia from middle Taiga of the Pribaikalie to the central part of the Himalayas. The mountains are the most vulnerable and often relict geosystems. Especially high sensitivity to changes of climate have nival-glacial and golets geosystems. Modern glaciers constantly declining in the Southern Siberia and the Himalayas. The open part of the glaciers, which are the most dynamic and sensitive to climate change, especially clearly visible on spatial images. Landsat data provide an indication of the change of glaciers at different latitudes and close time intervals since the early 1970’s. As a result, the analysis of such data, we were able to identify common trends and anomalies (especially in 2014–2015 years, before and after the earthquake in May 2015) demonstrated on all the glaciers. Studied changes of the glaciers of the Kodar Ridge (Azarova glacier, No 20), of the East Sayan (the Peretolchina glacier, No 31 and the Topografov glacier, No 18), of the Himalayas (the Khumbu glacier, No 133 and in the Langtang National Park: Lirung, Jubra, Ghonne glaciers).

The comparative analysis of these glaciers showed that the average rate of change of the area, these glaciers, in the early 1970’s was -0.176 km²/year to the beginning of the 2000’s it slows up -0.123, and up to date -0.047. Although glaciers Ghone, Lirung, especially Peretolchina it increases. We’ve noticed reduced of the glaciers, but also stabilizing of the glaciers in some years during of the past 50 years. The analysis was performed using GIS, databases, glaciers and satellite images Landsat.

Keywords

East Sayan Mountains, the Himalayas, GIS, dynamics of mountain glaciers, space images.

References

  1. Bajracharya S.R., Mool P. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Annals of Glaciology, 2007. V. 50. No 53. P. 81–86.
  2. Higuchi K., Watanabe O., Fushimi H., Takenaka S., Nagoshi A. Glaciers of Asia—glaciers of Nepal—Glacier Distribution in the Nepal Himalaya with comparisons to the Karakoram Range. Satellite image atlas of glaciers of the World. U.S. Geological Survey Professional Paper 1386–F–6, 2015. P. 293–320. Web resource: https://pubs.usgs.gov/pp/p1386f/ (accessed 01.08.2018).
  3. IPCC. Climate Change 2007. The physical science basis. Contribution of Working Group 1 to the Fourth assessment report of the Intergovernmental panel on climate change. Ed. by S. Solomon, D. Qin, M. Manning et al. Cambridge, N.Y.: Intergovern. panel on climate change, 2007. 996 p.
  4. Kitov A.D., Kovalenko S.N., Plyusnin V.M. The results of 100-year-long observations of the glacial geosystem dynamics in the Munku-Sardyk massif. Geography and natural resources, 2009. V. 30. No 3. P. 272–278. DOI: 10.1016/j.gnr.2009.09.012.
  5. Kitov A.D., Plyusnin V.M. Features of local glaciological phenomena in mountainous landscapes (the example of the Baikal-Urumqi Transect). InterCarto. InterGIS. Proccedindgs of International cоnference. Saratov, June 24–26, Urumqi, June 29–July 1, 2008. Saratov: International Cartographic Association, 2008. V. 14. P. 130–137 (in Russian, abs English).
  6. Kitov А.D., Plyusnin V.M. The database and GIS analysis of the status of glaciation of the Kodar Mountains (Northern Transbaikalia). Geography and Natural Resources, 2017. V. 38. No 2. P. 181–187. DOI: 10.1134/S1875372817020093.
  7. Kotlyakov V.M., Chernova L.P., Muravyov A.Ya., Khromova T.E., Zverkova N.M. Changes of mountain glaciers in the Northern and Southern Hemispheres over the past 160 years. Ice and Snow, 2017. V. 57. No 4. P. 453–467. DOI: 10.15356/2076-6734-2017-4-453-467 (in Russian).
  8. Kotlyakov V.M., Hromova T.E., Nosenko G.A., Popova V.V., Chernova L.P., Muravyov A.Ya., Rototaeva O.V., Nikitin S.A., Zverkova N.M. Recent changes in the glaciers of mountain regions of Russia. Moscow: KMK Scientific Press Ltd., 2015. 288 p. (in Russian).
  9. Kovalenko N.V. Mode and the evolution of small forms of glaciation. Moscow: MAKS Press, 2011. 240 p. (in Russian).
  10. Osipov E.Y., Osipova O.P. Glaciers of the Levaya Sygykta River watershed, Kodar Ridge, southeastern Siberia, Russia: modern morphology, climate conditions and changes over the past decades. Environment Earth Sciences, 2015. V. 74. No 3. P. 1969−1984. DOI: 10.1007/s12665-015-4352-4.
  11. Osipov E.Y., Osipova O.P., Klevtsov E.V. Inventory of glaciers in the Eastern Sayan on the basis of space surveys. Ice and Snow, 2017. V. 57. No 4. P. 483−497. DOI: 10.15356/2076-6734-2017-4-483-497 (in Russian).
  12. Peretolchin S.P. Glaciers of the Munku-Sardyk Range. News of Tomsk Technical Institute. Tomsk: Typolithography of the Siberian printing partnership, 1908. V. 9. 60 p. (in Russian).
  13. Plastinin L.A. Remotely-mapping study of nival-glacial complexes mountain regions of Siberia (the morphology and dynamics of glaciers, snow and ice of the Kodar ridge in the Trans-Baikal region). Irkutsk: IrSTU Publishing house, 1998. 142 p. (in Russian).
  14. Shea J.M., Immerzeel W.W., Wagnon P., Vincent C., Bajracharya S. Modelling glacier change in the Everest region, Nepal Himalaya. The Cryosphere, 2015. V. 9. P. 1105−1128. DOI: 10.5194/tc-9-1105-2015.
  15. Stepanova O.G., Trunova V.A., Sidorina A.V., Zvereva V.V., Melgunov M.S., Petrovskii S.K., Krapivina S.M., Fedotov A.P., Rakshun Ya.V. Investigating bottom sediments from proglacial Lake Ehoy (Eastern Sayan Ridge) by means of SR-XRF. Bulletin of the Russian Academy of Sciences. Physics. Allerton Press, Inc., 2015. V. 79. No 1. P. 118−121. DOI: 10.3103/S1062873815010311.
  16. USSR Glacier Inventory. Leningrad: Hydrometeoizdat, 1973. V. 16. Iss. 1. Part 3–5. Iss. 2. Part 1. 37 p. (in Russian).
  17. USSR Glacier Inventory. Leningrad: Hydrometizdat, 1972. V. 17. Iss. 2. Part 1. 44 p. (in Russian).
  18. Wagnon P., Vincent C., Arnaud Y., Berthier E., Vuillermo, E., Gruber S., Ménégoz M., Gilbert A., Dumont M., Shea J.M., Stumm D., Pokhrel B.K. Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. The Cryosphere, 2007. V. 7. P. 1769–1786. DOI: 10.5194/tc-7-1769-2013.

For citation: Kitov A.D., Pluysnin V.M., Bilichenko I.N. Change of glaciers in the Himalayas and Southern Siberia according to Landsat InterCarto. InterGIS. GI support of sustainable development of territories: Proceedings of the International conference. Moscow: Moscow University Press, 2019. V. 25. Part 2. P. 146–160. DOI: 10.35595/2414-9179-2019-2-25-146-160 (In Russian)