DOI: 10.24057/2414-9179-2018-2-24-250-261

View or download the article (Rus)

About the Authors

Igor V. Florinsky

Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Pushchino, 142290, Moscow Region, Russia,

Sergey V. Filippov

Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Pushchino, 142290, Moscow Region, Russia,


Three-dimensional modeling is one of the data processing steps, which is important for further adequate perception of the information on spatially distributed objects, phenomena, and processes. Three-dimensional terrain modeling based on digital elevation models (DEM) using simple orthographic and perspective projections is a standard procedure implemented in many commercial and open-source geoinformation systems. However, features of standard geoinformation tools may be insufficient for three-dimensional visualization solving major scientific problems. In this article, we describe and illustrate a methodology developed to generate three-dimensional terrain models using the free open-source Blender package (its brief characteristics are presented). As an initial data, we used a testing DEM for a portion of the central part of the Arctic Ocean floor extracted from the International Bathymetric Chart of the Arctic Ocean Version 3.0. The developed methodology for generation of three-dimensional terrain models includes the following key stages: (1) Automatic creating a polygonal object by means of a special Python script; (2) Selecting a vertical exaggeration scale; (3) Selecting a method for smoothing the geometry of a three-dimensional model; (4) Selecting a number of lighting sources and their location; (5) Selecting a material for the model surface and a shading method; (6) Overlaying thematic textures on the three-dimensional model; (7) Rendering the model. The developed methodology will be used as a basis for the implementation of the project on the creation of an information and computing system for morphometric modeling of the topography of the Arctic Ocean floor. The system will be designed for information support of hydrographic, marine geomorphological, geological, geophysical, and oceanological studies in the Arctic Region.


visualization, digital terrain modeling, 3D modeling, computer graphics, Python


  1. Autin L., Johnson G., Hake J. et al. uPy: a ubiquitous CG Python API with biologicalmodeling applications. IEEE Computer Graphics and Applications. 2012. V. 32, No 5. P. 50–61. DOI: 10.1109/MCG.2012.93.
  2. Blain J.M. The complete guide to Blender graphics: computer modeling and animation. 2nd edition. Boca Raton: CRC Press, 2014. 575 p.
  3. Breunig M. Integration of spatial information for geo-information. Berlin: Springer, 1996. 171 p.
  4. Catmull E., Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design. 1978. V. 10, No 6. P. 350–355. DOI: 10.1016/00104485(78)90110-0.
  5. Caumon G., Collon-Drouaillet P., Le Carlier de Veslud C. et al. Surface-based 3D modeling of geological structures. Mathematical Geosciences. 2009. V. 41, No 8. P. 927–945. DOI: 10.1007/s11004-009-9244-2.
  6. De Donatis M., Borraccini F., Susini S. Sheet 280–Fossombrone 3D: a study project for a new geological map of Italy in three dimensions. Computers and Geosciences. 2009. V. 35, No 1. P. 19–32. DOI: 10.1016/j.cageo.2007.09.004.
  7. Delarue F., Cornu S., Daroussin J. et al. 3D representation of soil distribution: an approach for understanding pedogenesis. Comptes Rendus Geoscience. 2009. V. 341, No 6. P. 486–494. DOI: 10.1016/j.crte.2009.04.004.
  8. Evans I.S. General geomorphometry, derivations of altitude, and descriptive statistics. Spatial analysis in geomorphology. London: Methuen, 1972. P. 17–90.
  9. Eyton J.R. Digital elevation model perspective plot overlays. Annals of the Association of American Geographers. 1986. V. 76, No 4. P. 570–576. DOI: 10.1111/j.1467-8306.1986.tb00137.x.
  10. Fernandez O., Jones S., Armstrong N. et al. Automated tools within workflows for 3D structural construction from surface and subsurface data. GeoInformatica. 2009. V. 13, No 3. P. 291– 304. DOI: 10.1007/s10707-008-0059-y.
  11. Florinsky I.V. Digital terrain analysis in soil science and geology. 2nd edition. Amsterdam: Academic Press, 2016. 486 p.
  12. Florinsky I.V., Filippov S.V. Development of virtual morphometric globes using Blender. arXiv: 1512.08511 [physics.geo-ph], 2015. 14 p.
  13. Florinsky I.V., Filippov S.V. A desktop system of virtual morphometric globes for Mars and the Moon. Planetary and Space Science. 2017. V. 137. P. 32–39. DOI: 10.1016/j.pss.2017.01.005.
  14. Florinsky I.V., Filippov S.V., Abramova A.S. et al. Towards geomorphometric modelling of the topography of the Arctic Ocean floor. Proceedings of the 7th International conference on cartography & GIS, 18–23 June 2018, Sozopol, Bulgaria. Sofia: Bulgarian Cartographic Association, 2018 (in press).
  15. Grunwald S., Barak P., McSweeney K., Lowery B. Soil landscape models at different scales portrayed in Virtual Reality Modeling Language. Soil Science. 2000. V. 165, No 8. P. 598–615.
  16. Guillaume B., Dhont D., Brusset S. Three-dimensional geologic imaging and tectonic control on stratigraphic architecture: upper Cretaceous of the Tremp Basin (south-central Pyrenees, Spain). American Association of Petroleum Geologists Bulletin. 2008. V. 92, No 2. P. 249–269. DOI: 10.1306/10110706089.
  17. Hansen C.D., Johnson C.R. (Eds.) The visualization handbook. Amsterdam: Academic Press, 2005. 962 p.
  18. Hess R. Blender foundations: the essential guide to learning Blender 2.6. Amsterdam: Focal Press, 2010. 404 p.
  19. Horn B.K.P. Hill shading and the reflectance map. Proceedings of the IEEE. 1981. V. 69, No 1. P. 14–47.
  20. Jakobsson M., Mayer L., Coakley B. et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters. 2012. V. 39, No 12. L12609. DOI: 10.1029/2012GL052219.
  21. Jenny B., Patterson T. Introducing plan oblique relief. Cartographic Perspectives. 2007. No 57. P. 21–40, 88–90. DOI: 10.14714/CP57.279.
  22. Jenny H., Jenny B., Hurni L. Interactive design of 3D maps with progressive projection. Cartographic Journal. 2010. V. 47, No 3. P. 211–221. DOI: 10.1179/000870410X12786821061495.
  23. Johnson G.T., Hertig S. A guide to the visual analysis and communication of biomolecular structural data. Nature Reviews Molecular Cell Biology. 2014. V. 15, No 10. P. 690–698. DOI  10.1038/nrm3874.
  24. Kaufmann O., Martin T. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers and Geosciences. 2008. V. 34, No 3. P. 278–290. DOI: 10.1016/j.cageo.2007.09.005.
  25. Kent B.R. 3D scientific visualization with Blender®. San Rafael: Morgan & Claypool Publishers, 2015. 105 p.
  26. Kent B.R. Visualizing astronomical data with Blender. Publications of the Astronomical Society of the Pacific. 2013. V. 125, No 928. P. 731–748. DOI: 10.1086/671412.
  27. Kukowski N., Hampel A., Hoth S., Bialas J. Morphotectonic and morphometric analysis of the Nazca plate and the adjacent offshore Peruvian continental slope—implications for submarine landscape evolution. Marine Geology. 2008. V. 254, No 1–2. P. 107–120. DOI: 10.1016/j.margeo.2008.05.017.
  28. Lemon A.M., Jones N.L. Building solid models from boreholes and user-defined crosssections. Computers and Geosciences. 2003. V. 29, No 5. P. 547–555. DOI: 10.1016/S00983004(03)00051-7.
  29. Lipşa D.R., Laramee R.S., Cox S.J. et al. Visualization for the physical sciences. Computer Graphics Forum. 2012. V. 31, No 8. P. 2317–2347. DOI: 10.1111/j.14678659.2012.03184.x.
  30. Maerten L., Pollard D.D., Maerten F. Digital mapping of three-dimensional structures of the Chimney Rock fault system, central Utah. Journal of Structural Geology. 2001. V. 23, No 4. P. 585–592. DOI: 10.1016/S0191-8141(00)00142-5.
  31. Masumoto S., Raghavan V., Yonezawa G. et al. Construction and visualization of a three dimensional geologic model using GRASS GIS. Transactions in GIS. 2004. V. 8, No 2. P. 211–223. DOI: 10.1111/j.1467-9671.2004.00176.x.
  32. Mateo Lázaro J., Sánchez Navarro J.Á., García Gil A., Edo Romero V. 3D-geological structures with digital elevation models using GPU programming. Computers and Geosciences. 2014. V. 70. P. 138–146. DOI: 10.1016/j.cageo.2014.05.014.
  33. McMahon M.J., North C.P. Three-dimensional integration of remotely sensed geological data: a methodology for petroleum exploration. Photogrammetric Engineering and Remote Sensing. 1993. V. 59, No 8. P. 1251–1256.
  34. Mendonça Santos M.L., Guenat C., Bouzelboudjen M., Golay F. Three-dimensional GIS cartography applied to the study of the spatial variation of soil horizons in a Swiss floodplain. Geoderma. 2000. V. 97, No 3–4. P. 351–366. DOI: 10.1016/S0016-7061(00)00045-8.
  35. Morris K. Using knowledge-base rules to map the three-dimensional nature of geological features. Photogrammetric Engineering and Remote Sensing. 1991. V. 57, No 9. P. 1209–1216.
  36. Palyvos N., Bantekas I., Kranis H. Transverse fault zones of subtle geomorphic signature in northern Evia Island (central Greece extensional province): an introduction to the Quaternary Nileas graben. Geomorphology. 2006. V. 76, No 3–4. P. 363–374. DOI: 10.1016/j.geomorph.2005.12.002.
  37. Patterson T. DEM manipulation and 3-D terrain visualization: techniques used by the U.S. National Park Service. Cartographica. 2001. V. 38, No 1–2. P. 89–101. DOI: 10.3138/8741G618-5601-1125.
  38. Pereira V., FitzPatrick E.A. Three-dimensional representation of tubular horizons in sandy soils. Geoderma. 1998. V. 81, No 3–4. P. 295–303. DOI: 10.1016/S0016-7061(97)00069-4.
  39. Peucker T.K. The use of computer graphics for displaying data in three dimensions. Cartographica. 1980. V. 17, No 2. P. 59–72. DOI: 10.3138/E230-6J01-2741-122J.
  40. Pflug R., Harbaugh J.W. (Eds.) Computer graphics in geology. Berlin: Springer, 1992. 298 p.
  41. Phong B.T. Illumination for computer generated pictures. Communications of ACM. 1975. V. 18, No 6. P. 311–317. DOI: 10.1145/360825.360839.
  42. Qi F., Zhu A., Harrower M., Burt J.E. Fuzzy soil mapping based on prototype category theory. Geoderma. 2006. V. 136, No 3–4. P. 774–787. DOI: 10.1016/j.geoderma.2006.06.001.
  43. Ramasundaram V., Grunwald S., Mangeot A. et al. Development of an environmental virtual field laboratory. Computers and Education. 2005. V. 45, No 1. P. 21–34. DOI: 10.1016/j. compedu.2004.03.002.
  44. Scianna A. Building 3D GIS data models using open source software. Applied Geomatics. 2013. V. 5, No 2. P. 119–132. DOI: 10.1007/s12518-013-0099-3.
  45. Zanchi A., Francesca S., Stefano Z. et al. 3D reconstruction of complex geological bodies: examples from the Alps. Computers and Geosciences. 2009. V. 35, No 1. P. 49–69. DOI: 10.1016/j.cageo.2007.09.003.
  46. Ziadat F.M., Taylor J.C., Brewer T.R. Merging Landsat TM imagery with topographic data to aid soil mapping in the Badia region of Jordan. Journal of Arid Environments. 2003. V. 54, No 3. P. 527–541. DOI: 10.1006/jare.2002.1076.

For citation: Florinsky I.V., Filippov S.V. THREE-DIMENSIONAL TERRAIN MODELING: APPLICATION OF THE BLENDER PACKAGE. Proceedings of the International conference “InterCarto. InterGIS”. 2018;24(2):250–261 DOI: 10.24057/2414-9179-2018-2-24-250-261 (in Russian)