TOWARDS THE ISSUE OF ALLOCATION OF THE TIME FRAMES FOR GROWING SEASONS USING GROUND OBSERVATIONS AND REMOTE SENSING DATA

http://doi.org/10.24057/2414-9179-2018-2-24-129-140

View or download the article (Rus)

About the Authors

Evgeny A. Panidi

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
St. Petersburg, Russia,
E-mail: panidi@ya.ru, e.panidi@spbu.ru

Ivan S. Rykin

Saint Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
St. Petersburg, Russia,
E-mail: ivan.rykin94@gmail.com, st059068@student.spbu.ru

Valery Yu. Tsepelev

Russian State Hydrometeorological University, Meteorological Faculty, Department of Meteorological Forecasts,
St. Petersburg, Russia,
E-mail: v0010200@mail.ru

Abstract

Many scientific and environmental monitoring projects require estimations of the time frames and duration of the growing seasons, which allocated by detecting transition of surface air temperature through the thresholds of +5°C and +10°C. Such estimations usually based on the analysis of surface air temperature annual graphs. However, in a number of situations it become difficult due to the high dynamics of the temperature and to the possibility of long-term temperature fluctuations around the thresholds. In addition, observations of surface air temperature are performed at the meteorological stations, while observation network, in many cases, appears to be too sparse. As a result, spatial interpolation is required to estimate spatial distribution and spatial dynamics of time frames and duration of growing seasons, which leads to significant errors in the estimations.

In this paper, we consider a method of time frames determining for the spring, summer and autumn growing seasons on the basis of Normalized Difference Water Index (NDWI) annual graph analysis. Computation of the NDWI can be performed on the basis of satellite imagery. In this case, a map series reflecting spatial distribution of the index can be produced, which allows to estimate spatial heterogeneity and spatial dynamics of growing seasons without use of interpolation. The paper describes briefly a method applied to estimate framing dates of the growing seasons using NDWI data, and presents some results of consistency assessment of the framing dates estimations produced on the basis of NDWI and on the basis of surface air temperature monitoring at the meteorological stations. Conclusions are drawn about probable consistency of NDWI-based estimations of growing season framing dates with dynamics of vegetation phases, and about need of further accumulation and statistical analysis of satellite and ground-based observations.

Keywords

Growing Seasons, Ground Meteorological Observations, Remote Sensing Data, MODIS, NDWI.

References

  1. Bobkov A., Panidi E., Torlopova N., Tsepelev V. NDVI Dynamics of The Taiga Zone in Connection with Modern Climate Changes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2015. V. XL-7/W3. P. 157–163. DOI: 10.5194/isprsarchives-XL-7-W3-157-2015.
  2. Delbart N.J-P., Kergoats L., Le Toan T., Lhermitte J., Picard G. Determination of Phenological Dates in Boreal Regions Using Normalized Difference Water Index. Remote Sensing of Environment. 2005. V. 97(1). P. 26–38. DOI: 10.1016/j.rse.2005.03.011.
  3. Gao B.C. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. Remote Sensing of Environment. 1996. V. 58(3). P. 257–266.
  4. Goetz S.J., Mack M.C., Gurney K.P., Randerson J.T., Houghton R.A. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environmental Research Letters. 2007. V. 2, No 4. 045031. 9 p. DOI: 10.1088/1748-9326/2/4/045031.
  5. Jia G.J., Epstein H.E., Walker D.A. Vegetation greening in the Canadian Arctic related to decadal warming. Journal of Environmental Monitoring. 2009. No 11. P. 2231–2238.
  6. Medvedeva M.A., Bartalev S.A., Lupyan E.A., Matveev A.M., Tolpin V.A., Poida A.A. The possibility of estimation of the growing season onset on the basing on satellite and meteorological data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2008. V. 5, issue 2. P. 313–321 (in Russian).
  7. Panidi E., Tsepelev V. NDWI-based Technique for Detection of Change Dates of the Growing Seasons in Russian Subarctic. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2017. V. XLII-3/W2. P. 179–182. DOI: 10.5194/ispr sarchives-XLII-3-W2-179-2017.
  8. Panidi E., Tsepelev V., Torlopova N., Bobkov A. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016. V. XLI-B8. P. 997–1002. DOI: 10.5194/isprs-archives-XLI-B8-997-2016.
  9. Ped’ D.A. About determination of dates of steady air temperature transition through certain values. Meteorologiya i gidrologiya. 1951. No 10. P. 38–39 (in Russian).
  10. Sekhon N.S., Hassan Q.K., Sleep R.W. A Remote Sensing Based System to Predict Early Spring Phenology Over Boreal Forest. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2010. V. XXXVIII. Part 1. 5 p.
  11. Semenova I.G. Synoptic and Climatic Conditions of Formation of Arid Phenomena in Ukraine. Doctoral thesis. 2015. 296 p. (in Ukrainian).
  12. Stow D.A., Hopea A., McGuireb D., Verbylac D., Gamond J., Huemmriche F., Houstond S., Racinef C., Sturmg M., Tapeh K., Hinzman L., Yoshikawai K., Tweediej C., Noylek B., Silapaswanl C., Douglasm D., Grifthn B., Jiao G., Epsteino H., Walkerp D., Daeschnera S., Petersena A., Zhouq L., Myneni R. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment. 2004. No 89. P. 281–308.
  13. Skrynyk O.A., Snizhko S.I. The issue of determining of the surface air temperature stable transition dates through a certain fixed value (analysis of methods). Ukrai’ns’kyj gidrometeorologichnyj zhurnal. 2008. No 3. P. 56–66 (in Ukrainian).
  14. Skrynnik O.Ya., Skrynnik O.A. Climatological method for determining of the date of average daily air temperature steady transition through a given threshold. Meteorologiya i gidrologiya. 2009. No. 10. P. 90–99 (in Russian).
  15. USSR climate reference book, issue 1. Arkhangelsk and Vologda regions, Karelian and Komi ASSR. Part. 2. air and soil temperature. L.: Gidrometeoizdat, 1968. 360 p. (in Russian).

For citation: Panidi E.A., Rykin I.S., Tsepelev V.Yu. TOWARDS THE ISSUE OF ALLOCATION OF THE TIME FRAMES FOR GROWING SEASONS USING GROUND OBSERVATIONS AND REMOTE SENSING DATA Proceedings of the International conference “InterCarto. InterGIS”. 2018;24(2):129–140 http://doi.org/10.24057/2414-9179-2018-2-24-129-140