DATA MINING FOR MODELING THE CLIMATE INFLUENCE ON THE ECONOMY (IN THE CASE OF LOGGING IN THE REPUBLIC OF KARELIA)

http://doi.org/10.24057/2414-9179-2018-1-24-273-284

View or download the article (Rus)

About the Authors

Egor A. Prokopyev

Institute of Economics of Karelian Research Centre of the Russian Academy of Sciences,
A. Nevsky pr., 50, 185030, Petrozavodsk, Russia,
E-mail: e_prokopiev@mail.ru

Natalya V. Krutskih

Institute of Geology of Karelian Research Centre of the Russian Academy of Sciences,
Pushkinskaya str., 11, 185910, Petrozavodsk, Russia,
E-mail: natkrut@gmail.com

Pavel A. Ryazantsev

Karelian Research Centre of the Russian Academy of Sciences,
Pushkinskaya str., 11, 185910, Petrozavodsk, Russia,
E-mail: priazantsev@krc.karelia.ru

Natalya A. Roslyakova

V.A. Trapeznikov Institute of Control Sciences of RAS,
Profsoyuznaya str., 65, 117997, Moscow, Russia,
E-mail: roslyakovana@gmail.com

Abstract

The contributions of the forest income to the economy is possible if it is provided with the transport accessibility to loggers. Loggers in Russia face the challenge of working in hard-to-reach areas with the use of snow-ice roads in the winter time, and the Republic of Karelia is no exception. However, the climate change is threatening the seasonal transportation infrastructure leading to economic challenges that will only worsen as warmer temperatures further reduce winter road access. The scientific novelty of this problem is to develop an interdisciplinary approach to analyze the impact of climate change on the Russian economy by including the problem of the functioning of winter roads in it.

The paper proposes an approach for using satellite observation data (Landsat 8) Earth remote sensing data to improve the models of global warming influence on the volumes of timber removal by winter roads. Identification of felling with the help of space images processing provides an opportunity to move from the construction of mathematical models to five climatic zones exceeding hundreds of square kilometers to a gridding system (10 × 10 km). Identification of logging sites was carried out using methods to monitor changes in spectral characteristics before and after logging in the ArcGis 9.3 software package. To determine the terms of winter work in the software Surfer 11, based on the data of twenty two weather stations, daily weather maps were constructed, suitable for the operation of winter roads. Comparison of the two maps allows you to specify the duration of the winter road for each specific plot. The approach was tested on the territory of the Zaonezhsky Peninsula.

The practice has shown that the high laboriousness of data processing, the poor quality of resolution of space images available in open access for previous years, coupled with the high level of cloudiness in the territory of Karelia during the autumn-winter period make this approach difficult to apply throughout the region.

Keywords

global warming, logging, winter roads, ice roads, transport infrastructure.

References

  1. Chugunkova A.V. Investigation of global climate change effect on feasible duration of winter-felling season. Issledovanija molodyh uchjonyh: jekonomicheskaja teorija, sociologija, otraslevaja i regional’naja jekonomika. 2016. P. 297–301 (in Russian).
  2. Davis R., Yang Z., Yost A., Belongie C., Cohen W. The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. Forest Ecology and Management. 2017. V. 390. P. 173–186.
  3. Gaudreau J., Perez L., Drapeau P. BorealFireSim: A GIS-based cellular automata model of wildfires for the boreal forest of Quebec in a climate change paradigm. Ecological Informatics. 2016. V. 32. P. 12–27.
  4. Goltsev V., Lopatin E. The impact of climate change on the technical accessibility of forests in the Tikhvin District of the Leningrad Region of Russia. International Journal of Forest Engineering. 2013. 24:2. P. 148–160.
  5. Jaldygina N.B. Software ENVI for forest monitoring. Geomatika. 2011. No 3. P. 34–39 (in Russian).
  6. Kazarjan M.L., Shahraman’jan M.A. Forest monitoring by means satellite imagery-control deforestation. Sovremennye problemy nauki i obrazovanija. 2015. No 1-1. web resource: http://science-education.ru/ru/article/view?id=18568, accessed 19.03.2018 (in Russian).
  7. Kirilenko A.P., Sedjo R.A. Climate change impacts on forestry. PNAS. 2007. V. 104. No 50. P. 19697–19702.
  8. Komkov N.I., Selin V.S., Cukerman V.A., Gorjachevskaja E.S. Scenario forecast of the development of the Northern Sea Route. Problemy prognozirovanija. 2016. No 2. P. 87–98 (in Russian).
  9. Lee C., Schlemme C., Murray J., Unsworth R. The cost of climate change: Ecosystem services and wildland fires. Ecological Economics. 2015. V. 116. P. 261–269.
  10. Lonergan S., Di Francesco R., Woo M. Climate Change and Transportation in Northern Canada: An Integrated Impact Assessment. Climatic Change 1993. V. 24. P. 331–351.
  11. Ma W., Liang J., Cumming J.R., Lee E., Welsh A.B., Watson J.V., Zhou M. Fundamental shifts of central hardwood forests under climate change. Ecological Modelling. 2016. V. 332. P. 28–41. DOI: 10.1016/j.ecolmodel.2016.03.021.
  12. Mullan D., Swindles G., Patteson T., Galloway J., Macumber A., Falck H., Chen J., Pisaric M. Climate change and the long-term viability of the World’s busiest heavy haul ice road. Theoretical and Applied Climatology. 2017. V. 129. No 3–4. P. 1089–1108.
  13. Nazarova L.E. Variability of average long-term values of air temperature in Karelia. Izvestija Russkogo geograficheskogo obshhestva. 2014. V. 146. No 4. P. 27–33 (in Russian).
  14. Nikitina Ju.V., Nikitin V.N. Development of the techniques for computerized interpretation of illegal deforestation satellite images taken at different times. Interjekspo Geo-Sibir’. 2010. V. 3. No 2. P. 175–180 (in Russian).
  15. Prokop’ev E.A., Rosljakova N.A., Rjazancev P.A. Climate impact on the logging volume in the Republic of Karelia. Drukerovskij vestnik. 2017. No 5. P. 173–185 (in Russian).
  16. Prowse T.D., Furgal C., Chouinard R., Melling H., Milburn D., Smith S.L. Implications of Climate Change for Economic Development in Northern Canada: Energy, Resource, and Transportation Sectors. AMBIO: A Journal of the Human Environment. 2009. V. 38. No 5. P. 272–281.
  17. Segal D. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX, 1982. P. 949–951.
  18. Shegel’man I.R., Shhegoleva L.V., Lukashevich V.M. Substantiation of Forest Roads Operating Period. Izvestija vysshih uchebnyh zavedenij. Lesnoj zhurnal. 2007. No 2. P. 54–57 (in Russian).
  19. Shhegoleva L.V., Kochanov A.N., Lukashevich V.M., Shhukin P.O. Assessment of transport development of forest resources taking into account seasonality: guidelines. Petrozavodsk: Izdatel’stvo PetrGU, 2008. 40 p. (in Russian).
  20. Smolina S.G. Estimation of the prospects for the development of river transport in Russia on the basis of forecasting changes in runoff and hydrodynamics of the hydroset due to global warming. Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. 2009. V. 42. P. 220–237 (in Russian).
  21. Sohngen B., Tian X. Global climate change impacts on forests and markets. Forest Policy and Economics. 2016. V. 72. P. 18–26. DOI: 10.1016/j.forpol.2016.06.011.
  22. Wang X.-Y., Zhao C.-Y., Jia Q.-Y. Impacts of Climate Change on Forest Ecosystems in Northeast China // Advances in Climate Change Research. 2013. V. 4, No 4. P. 230–241. DOI: 10.3724/SP.J.1248.2013.230.
  23. Wimberly M.C., Liu Z. Interactions of climate, fire, and management in future forests of the Pacific Northwest. Forest Ecology and Management. 2014. V. 327. P. 270–279. DOI: 10.1016/j.foreco.2013.09.043.

For citation: Prokopyev E.A., Krutskih N.V., Ryazantsev P.A., Roslyakova N.A. DATA MINING FOR MODELING THE CLIMATE INFLUENCE ON THE ECONOMY (IN THE CASE OF LOGGING IN THE REPUBLIC OF KARELIA) Proceedings of the International conference “InterCarto. InterGIS”. 2018;24(1):273–284 http://doi.org/10.24057/2414-9179-2018-1-24-273-284