ASSESSMENT OF THE DYNAMICS OF THERMOKARST LAKES BASED ON THEIR MORPHOLOGICAL AFFILIATION

https://doi.org/10.24057/2414-9179-2017-1-23-428-439

View or download the article (Rus)

About the Authors

E. I. Pizhankova

Lomonosov Moscow State University
Russian Federation

Faculty of Geology,

119991, Moscow, 1 Leninskiye Gory

A. V. Gavrilov

Lomonosov Moscow State University
Russian Federation

Faculty of Geology,

119991, Moscow, 1 Leninskiye Gory

T. V. Rodionova

ZAO NPK “BARL”
Russian Federation
Dokukina st, 8/2, 129226, Moscow

V. A. Spiridonov

VNIIgeosystem
Russian Federation
Varshavskoe ave, 8, 117105, Moscow

Abstract

We have proposed an approach to estimating the areal dynamics of thermokarst lakes. It takes into account the role of the main factors in the development of the lake thermokarst, one of the most common processes in the accumulative plains of Russian permafrost zone. One of the factors is the morphological structure which determines the drainability of the earth’s surface; it is genetically related to manifestation of the lake thermokarst.

The research has involved the archival aerial images, Landsat space images, digital elevation model according to ASTER data, topographic, geological and tectonic maps and charts.

In the morphostructural zoning, an area ratio of the residual edoma to alases was the most important criterion. The zoning was controlled and supplemented by the analysis of a longitudinal grade of similar rivers, plan view of the hydrographic network pattern, and coefficient of river sinuosity. The analysis of the digital elevation model (DEM), which showed differentiation of surface elevations and down-cutting of rivers and alases, played an important role.

The local morphostructures with an area of thousands – the first tens of thousands of square kilometers, representing the alas plains with scattered fragments of the edoma, are identified as negative morphostructures. The territories of Ice Complex with the limited area of alases (less than 50 %) form positive morphostructures.

We have measured the area of thermokarst lakes using multi-temporal remote sensing data for the Shirokostan Peninsula and adjacent territory, selected as a key site. No significant change for the lakes has been registered within the positive morphological structure. The negative morphological structure is characterized by the following: 1) the number of lakes and their area exceed those in the positive morphostructure; 2) the number of lakes that reduced their area is greater than the increased ones due to the natural migration of the river network and its draining influence; 3) the total increase of the area of lakes predominates over the decrease, which is most typical for large lakes. This process occurs due to thermal abrasion of the shores of the low-lying coastal territory, which is composed of rocks with polygonal ice wedges. 

Keywords

thermokarst lakes, morphostructural zoning, tectonic structures, Ice Complex, Alas Complex.

References

  1. Balandin V.A. Kompleksnoe izuchenie neotektoniki zakrytyh territorij (na primere YanoKolymskoj nizmennosti) [Complex studying of the closed territories neotectonics (on the example of Yano-Kolyma Lowland)], Kajnozoj Vostochnoj Yakutii, Yakutsk: YAF SO AN SSSR, 1980, pp. 131–137 (in Russian).
  2. Veremeeva A.A. Zakonomernosti organizacii sovremennogo rel’efa primorskih nizmennostej severa Yakutii na osnove ispol’zovaniya GIS-tekhnologij [The Patterns of modern relief organization of Northern Yakutia coastal lowlands – remote sensing and GIS-studies], Materialy chetvertoj konferencii geokriologov Rossii. MGU imeni M.V. Lomonosova, 7–9 iyunya 2011 g. T. 2. Chast’ 5. Regional’naya i istoricheskaya geokriologiya, Moscow: Universitetskaya kniga, 2011, pp. 29–35 (in Russian).
  3. Veremeeva A.A., Glushkova N.V. Formirovanie rel’efa v rajonah rasprostraneniya otlozhenij ledovogo kompleksa v tundrah Kolymskoj nizmennosti (po dannym kosmicheskoj s’’emki) [Relief formation in the regions of the Ice Complex deposit occurrence: remote sensing and GIS-studies in the Kolyma Lowland tundra], Kriosfera Zemli, 2016, t. XX, No 1, pp. 15–25 (in Russian).
  4. Elsakov V.V., Marushchak I.O. Mezhgodovye izmeneniya termokarstovyh ozer severovostoka Evropejskoj Rossii [Interannual changes of thermokarst lakes in the North-East of European Russia], Issledovanie Zemli iz Kosmosa, 2011, No 5, pp. 45–51 (in Russian).
  5. Kaplina T.N. Zakonomernosti razvitiya kriolitogeneza v pozdnem kajnozoe na akkumulyativnyh ravninah severo-vostoka Azii [Regularities in the development of cryolithogenesis in the Late Cenozoic on the accumulative plains of North-East Asia]. Avtoref. dis. dokt. geol.- min. nauk, Yakutsk: IM SO AN SSSR, 1987, 41 p. (in Russian).
  6. Karta novejshej tektoniki SSSR i sopredel‘nyh oblastej, masshtab 1:5 000 000 (red. N.I. Nikolaev) [Map of the modern tectonics of the USSR and adjacent areas, scale 1: 5 000 000 (edited by N.I. Nikolaev)], Mingeo SSSR, 1979 (in Russian).
  7. Kirpotin S.N., Polishchuk Yu.M., Bryksina N.A. Dinamika ploshchadej termokarstovyh ozer v sploshnoj i preryvistoj kriolitozonah Zapadnoj Sibiri v usloviyah global’nogo potepleniya [The thermokarst lakes areas dynamics in continuous and discontinuous kriolitozone of Western Siberia under conditions of global warming, Vestnik TGU, 2008, No 311, pp. 185–189 (in Russian).
  8. Kravcova V.I., Bystrova A.G. Izmenenie razmerov termokarstovyh ozer v razlichnyh rajonah Rossii za poslednie 30 let [Changes in thermokarst lake size in different regions of Russia for the last 30 years], Kriosfera Zemli, 2009. T. 13, No 2, pp. 16–26 (in Russian).
  9. Kravcova V.I., Rodionova T.V. Issledovanie dinamiki ploshchadi i kolichestva termokarstovyh ozer v razlichnyh rajonah kriolitozony Rossii po kosmicheskim snimkam [Investigation of the dinamics in area and number of thermokarst lakes in various regions of Russian cryolithozone, using satellite images], Kriosfera Zemli, 2016, t. XX, № 1, pp. 81–89 (in Russian).
  10. Kravcova V.I., Tarasenko T.V. Izuchenie i kartografirovanie dinamiki termokarstovyh ozer na territorii Zapadnoj Sibiri po raznovremennym kosmicheskim snimkam [Studying and mapping the dynamics of thermokarst lakes in Western Siberia by multitemporal space images], Dinamika okruzhayushchej sredy i global’nye izmeneniya klimata, 2010, T. 1, pp. 88–93 (in Russian).
  11. Obshchee merzlotovedenie (geokriologiya). Uchebnik. Pod red. V.A. Kudryavceva [General permafrost studies (geocryology). Tutorial. Edited by V.A. Kudryavtsev]. Moscow: Izd-vo MGU, 1978, 464 p. (in Russian).
  12. Primenenie geomorfologicheskih metodov v strukturno-geologicheskih issledovaniyah [The application of geomorphological methods in structural geological studies.]. Moscow: Nedra, 1970, 296 p. (in Russian).
  13. Romanovskij N.N., Gavrilov A.V., Tumskoj V.E. i dr. Termokarst i ego rol’ v formirovanii pribrezhnoj zony shel’fa morya Laptevyh [Thermokarst and its role in the formation of the near shore zone of the Laptev Sea shelf], Kriosfera Zemli, 1999, T. III, № 3, pp. 79–91 (in Russian).
  14. Tarasenko T.V., Kravcova V.I. Issledovanie izmenenij ploshchadej termokarstovyh ozer na osnove analiza kosmicheskih snimkov [The study of changes in thermokarst lakes areas on the basis of space images analysis]. Trudy desyatoj mezhdunarodnoj konferencii po merzlotovedeniyu. Salekhard, 25–29 iyunya 2012 g. Tom 3. Tyumen’: OOO «Pechatnik», 2012, pp. 505–510 (in Russian).
  15. Smirnova I.O., Suhacheva L.L., Rusanova A.A. Izuchenie izmenenij termokarstovyh ozer i beregovoj linii morya na severo-vostoke Evropejskoj chasti Rossii po materialam raznovremennyh kosmicheskih s’’emok [Studying changes of thermokarst lakes and the sea coastline in the North-east of European part of Russia on multitemporal satellite images], Tezisy konferencii “Geokriologicheskoe kartografirovanie: problemy i perspektivy”, Moskva 5–6 iyunya 2013 g., RUDN, Moscow, pp. 12–8132 (in Russian).
  16. Fitzgerald D., Riordan B.A. Permafrost and ponds. Remote sensing and GIS used to monitor Alaska wetlands at the landscape level, Agroborealis, 2003, 35, No 1, pp. 30–35.
  17. Smith L.C., Sheng Y., Macdonald G.M., Hinzman L.D., Disappearing Arctic Lakes, Science, 2005, vol. 308, No 5727, pp. 1429.

For citation: Pizhankova E.I., Gavrilov A.V., Rodionova T.V., Spiridonov V.A. ASSESSMENT OF THE DYNAMICS OF THERMOKARST LAKES BASED ON THEIR MORPHOLOGICAL AFFILIATION. Proceedings of the International conference “InterCarto. InterGIS”. 2017;23(1):428-439. https://doi.org/10.24057/2414-9179-2017-1-23-428-439