View or download the article (Rus)

About the Author

M. Y. Grishchenko

M.V.Lomonosov Moscow State University, Faculty of Geography Moscow, Russia
Russian Federation



Modern cities are characterized by special urban landscape and special urban climate. Urban heat island is a phenomenon closely associated with urban territories. There are many methods developed for studying urban heat island, they can be combined into two groups: imagery-based methods and physicomathematical methods. Using spatial imagery can provide revealing thermal anomalies evolution in time and space, spatial distribution of various thermal anomalies, differences in quantitative measures of various thermal anomalies. Despite the fact that imagery-based methods are seemed to be very widespread among scientists all over the world, still there are some problems with using spatial imagery. The best spatial resolution of accessible thermal imagery is 60 m (ETM+ sensor), and sometimes it is not enough for urban studies (many urban objects have smaller dimensions). The problem of urban heat island is rather serious in modern world, and it needs data of very good quality.


  1. Горный В.И., Шилин Б.В., Ясинский Г.И. Тепловая аэрокосмическая съёмка. М.: Недра, 1993. 128 с.
  2. Ершова Т.В., Кудашев Е.Б., Мясников В.П., Сюнтюренко О.В., Хохлов Ю.Е. Аэрокосмический экологический мониторинг мегаполисов с использованием новейших ИКТ в контексте формирования информационного общества // Информационное общество, 2001, вып. 5, с. 38-42.
  3. Книжников Ю.Ф., Кравцова В.И. Аэрокосмические исследования динамики географических явлений. М., Изд-во Моск. Ун-та, 1991. 206 с.: с илл.
  4. Коновалова Т.И., Трофимова И.Е. Картографирование экологического состояния урбанизированных территорий на основе материалов дистанционных исследований Земли // Исследования Земли из космоса, 2008, №4, с. 36-44.
  5. Константинов П.И. Изменение летних условий микроклимата Московского мегаполиса в условиях глобального потепления: автореф. дис. канд. географических наук: 25.00.30 / Московский Государственный Университет имени М.В.Ломоносова. – М., 2011. – 23 с.
  6. Кораблёва Е.Г., Ленская О.Ю. Исследования острова тепла города Челябинска в зимний период // Вестник Челябинского государственного университета. 2010. № 8. С. 15-23.
  7. Локощенко М.А. Особенности городского «острова тепла» в Москве. – Состав атмосферы. Атмосферное электричество. Климатические процессы. XV Всероссийская школа-конференция молодых учёных. Борок, 2011. С. 19 – 20.
  8. Мягков М.С., Губернский Ю.Д., Конова Л.И., Лицкевич В.К. Город, архитектура, человек и климат. М.: Архитектура-С, 2007. 344 с.
  9. Поляков А.В., Тимофеев Ю.М., Успенский А.Б. Возможности определения температуры и излучательной способности поверхности суши по данным спутниковых ИК-зондировщиков высокого спектрального разрешения (ИКФС-2) // Исследование Земли из космоса, 2010, № 4, с. 85-90
  10. Aniello C.A. Using Landsat-TM thermal data to map micro-urban heat islands in Dallas, Texas. Submitted to the Graduate Faculty of AddRan College of Arts and Sciences Texas Christian University in partial fulfillment of the requirements for the degree of Master of Science, December 1993.
  11. Anquez P., Herlem A. Les îlots de chaleur dans la region métropolitaine de Montréal: causes, impacts et solutions // École des sciences de la gestion de l'Université du Québec à Montréal. Cher de responsabilité sociale et de développement durable. ville.montreal.qc.ca
  12. Atkinson B.W. Numerical modelling of urban heat-island intensity // Boundary-Layer Meteorology, 2003, №109, p. 285-310.
  13. Cantat O. L’îlot de chaleur urbain parisien selon les types de temps // Norois, 2004, №191 (2004/2), p. 75-102.
  14. Cheval S., Dumitrescu A. The July urban heat island of Bucharest as derived from modis images // Theoretical and Applied Climatology, 2009, №96, p. 145-153.
  15. Chudnovsky A., Ben-Dor E., Saaroni H. Diurnal thermal behavior of selected urban objects using remote sensing measurements // Energy and Buildings, 2004, №36, p. 1063-1074.
  16. Dousset B., Gourmelon F. Satellite multi-sensor data analysis of urban surface temperatures and landcover // ISPRS Journal of Photogrammetry & Remote Sensing, 2003, №58, p. 43-54.
  17. Gluch R., Quattrochi D.A., Luvall J.C. A multi-scale approach to urban thermal analysis // Remote Sensing of Environment, 2006, №104, p. 123-132.
  18. Hung T., Uchihama D., Ochi S., Yasuoka Y. Assessment with satellite data of the urban heat island effects in Asian mega cities // International Journal of Applied Earth Observation and Geoinformation, 2006, №8, p. 34-48.
  19. Imhoff M.L., Zhang P., Wolfe R.E., Bounoua L. Remote sensing of the urban heat island effect across biomes in the continental USA // Remote Sensing of Environment, 2010, №114, p. 504–513.
  20. Johnson D.P., Wilson J.S. The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia // Applied Geography, 2009, №29, p. 419–434.
  21. Lagouarde J.-P., Moreau P., Irvine M., Bonnefond J.-M., Voogt J.A., Solliec F. Airborne experimental measurements of the angular variations in surface temperature over urban areas: case study of Marseille (France) // Remote Sensing of Environment, 2004, №93, p. 443-462.
  22. Lokoshchenko M.A., Isaev A.A. Influence of Moscow city on the air temperature in Central Russia. Proceedings of the 5th International Conference on Urban Climate. Poland, Lodz, 2003, Vol.2, p. 449-453.
  23. Lu D., Weng Q. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA // Remote Sensing of Environment, 2006, №104, p. 157-167.
  24. Oki K., Omasa K. A Technique for Mapping Thermal Infrared Radiation Variation Within Land Cover // IEEE Transactions on Geoscience and Remote Sensing, 2003, Vol. 41, №6, p. 1521-1524.
  25. Peterson T.C. Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found // Journal of Climate, 2003, Vol. 16, №18, p. 2941-2959.
  26. Poglio T., Mathieu-Marni S., Ranchin T., Savaria E., Wald L. OSIrIS: a physically based simulation tool to improve training in thermal infrared remote sensing over urban areas at high spatial resolution // Remote Sensing of Environment, 2006, №104, p. 238-246.
  27. Pu R., Gong P., Michishita R., Sasagawa T. Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval // Remote Sensing of Environment, 2006, №104, p. 211-225.
  28. Ramachandra T.V., Kumar U. Greater Bangalore: Emerging Urban Heat Island // Geoinformatic Applications: сетевой журнал. 20th October 2010. URL: http://www.geoinformatic.org/archives/1796 (дата обращения: 20.12.10).
  29. Sobrino J.A., Jimenez-Munoz J.C., Paolini L. Land surface temperature retrieval from Landsat-5/TM // Remote Sensing of Environment, 2004, №90, p. 434-440.
  30. Southworth J. An assessment of Landsat TM band 6 thermal data for analyzing land cover in tropical dry forest regions // International Journal of Remote Sensing, 2004, Vol. 25, №4, p. 689-706.
  31. Srivastava P.K., Majumdar T.J., Bhattacharya A.K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data // Advances in Space Research, 2009, № 43, p. 1563-1574.
  32. Stathopoulou M., Cartalis C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece // Solar Energy, 2007, №81, p. 358-368.
  33. Stathopoulou M., Cartalis C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation // Remote Sensing of Environment, 2009, №113, p. 2592-2605.
  34. Suga Y., Ogawa H., Ohno K., Yamada K. Detection of surface temperature from Landsat-7/ETM+ // Advances in Space Research, 2003, Vol. 32, №11, p. 2235 - 2240.
  35. Tan K.C., Lim H.S., MatJafri M.Z., Abdullah K. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia // Environmental Earth Sciences, 2010, №60, p. 1509-1521.
  36. Voogt J.A., Oke T.R. Thermal remote sensing of urban climates // Remote Sensing of Environment, 2003, №86, p. 370-384.
  37. Weng Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends // ISPRS Journal of Photogrammetry and Remote Sensing, 2009, №64, p. 335-344.
  38. Weng Q., Lu D., Schubring J. Estimation of land surface temperature&ndashvegetation abundance relationship for urban heat island studies // Remote Sensing of Environment, 2004, №89, p.467-483.
  39. Weng Q., Quattrochi D.A. Thermal remote sensing of urban areas: An introduction to the special issue // Remote Sensing of Environment, 2006, №104, 119-122
  40. Yang J.S., Wang Y.Q., August P.V. Estimation of Land Surface Temperature Using Spatial Interpolation and Satellite-Derived Surface Emissivity // Journal of Environmental Informatics, 2004, №4(1), p. 37-44
  41. Zhang J., Wang Y., Li Y. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6 // Computers & Geosciences, 2006, №32, p. 1796-1805.
  42. Zhu G., Blumberg D.G. Classification using ASTER data and SVM algorithms; the case study of Beer Sheva, Israel // Remote Sensing of Environment, 2002, №80, p. 233-240.

For citation: Grishchenko M.Y. URBAN HEAT ISLAND AEROSPACE STUDIES. Proceedings of the International conference “InterCarto. InterGIS”. 2013;19(1):22-28. https://doi.org/10.24057/2414-9179-2013-1-19-22-28