COMPARISON OF THE GROUND AND SATELLITE TEMPERATURE DATA, CASE OF WRANGELL ISLAND

DOI: 10.24057/2414-9179-2016-1-22-88-94

View or download the article (Rus)

About the Authors

M. Y. Grishchenko

M.V. Lomonosov MSU
Russian Federation
Faculty of Geography

K. K. Chernulich

M.V. Lomonosov MSU
Russian Federation
Faculty of Geography

Abstract

In modern times, in the country many remote areas are characterized by low density of weather stations, which reduces the accuracy of synoptic forecasts for territories remoted from the weather stations. In this regard, the use of thermal infrared satellite images for simulation of some climatic parameters is considered by the authors as a promising area of science. The article presents the results of comparing the land surface temperature values calculated from Landsat satellites images and ground-measured air temperature values. For the considered seasons the indicators are characterized by a pronounced linear relationship with a high correlation coefficient.

Keywords

Thermal infrared satellite images, land surface temperature, atmospheric air temperature, Wrangell island

References

  1. Grishchenko M.Y. Analiz sezonnoi izmenchivosti poverkhnostnogo octrova tepla Moskvy po teplovym kosmicheskim snimkam // Geoinformatsionnoye kartografirovaniye v regionakh Rossii: materialy VII Vserossiyskoy nauchno-prakticheskoy konferencii (Voronezh, 10-12 dekabrya 2015 g.) / Voronezhskiy gosudarstvenniy universitet. [Analysis of the seasonal changes of the Moscow surface urban heat island based on thermal infrared satellite images // Geoinfirmation cartography in regions of Russia: Proceedings of VII Russian-wide research and practice conference (Voronezh, 10–12th of December 2015) / Voronezh state university] – Voronezh: Hauchnaya kniga, 2015. Pp. 29–36.
  2. Lyalko V.I., Filippovich V.Y., Stankevich S.A., Mychak A.G., Titarenko O.V. et al. Vliyaniye urbanizatsii na mikroklimat gorodov (po materialam teplovykh aerokosmocheskikh syomok). Informatsionniy otchyot o NIR [The effect of urbanization on the city microclimate (using the materials of thermal infrared aerospace surveys). Research project information report]. Kiev: TSAKIZ IGN NAN Ukrainy, 2014.
  3. Atmospheric Correction Module: QUAC and FLAASH User’s Guide // ENVI, Atmospheric Correction Module, Version 4.7, 2009.
  4. Atmospheric Correction Parameter Calculator // NASA. [Электронный ресурс]. URL: http://atmcorr.gsfc.nasa.gov/ (дата обращения 20.02.2016).
  5. Converting Landsat TM and ETM+ thermal bands to temperature // The Yale Center for Earth Observation, 2010. [Электронный ресурс]. URL: http://www.yale.edu/ceo (дата обращения 14.04.2012).
  6. Science data users handbook: Landsat 7: Data products: Level 1G Product // NASA, 2011. [Официальный сайт НАСА]. URL: http://www.yale.edu/ceo (дата обращения 08.04.2016).
  7. Srinivasan S. Using data from the Landsat 8 TIRS instrument to estimate surface temperature // Geohackers, 2013. [Электронный ресурс]. URL: http://geohackers.in/2013/08/using-datafrom-the-landsat-8-tirs-instrument-to-estimate-surface-temperature (дата обращения 10.03.2015).
  8. U.S. Department of the Interior U.S. Geological Survey: Landsat Missions: Using the USGS Landsat 8 Product // [Официальный сайт Геологической службы США]. URL: http://landsat.usgs.gov/Landsat8_Using_Product.php (дата обращения: 25.04.2016).
  9. Yang H., Zhang L.F., Zhang X., Fang C., Tong Q. Algorithm of emissivity spectrum and temperature separation based on TASI data // Journal of Remote Sensing. 2011. Vol. 15. No 6. Pp. 1242–1254.

For citation: Grishchenko M.Y., Chernulich K.K. COMPARISON OF THE GROUND AND SATELLITE TEMPERATURE DATA, CASE OF WRANGELL ISLAND. Proceedings of the International conference “InterCarto. InterGIS”. 2016;22(1):88–94 DOI: 10.24057/2414-9179-2016-1-22-88-94 (in Russian)