Geoinformation monitoring of spatial dynamics of surface temperature fields and urban and environmental indicators of the resort city of Pyatigorsk

DOI: 10.35595/2414-9179-2025-3-31-158-179

View or download the article (Rus)

About the Authors

Dmitriy S. Tasenko

North Caucasus Federal University, Faculty of International Relations,
1, Pushkina str., Stavropol, 355017, Russia,
E-mail: dimitri.tasenko@yandex.ru

Mikhail B. Kagan

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: kagan.mikko@gmail.com

Evgeniya A. Skripchinskaya

North Caucasus Federal University, Faculty of International Relations,
1, Pushkina str., Stavropol, 355017, Russia,
E-mail: gerdtea@yandex.ru

Natalia A. Pozdnyakova

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: n.pozdnyakova@spbu.ru

Tatyana A. Andreeva

St. Petersburg State University, Institute of Earth Sciences,
7-9, Universitetskaya emb., St. Petersburg, 199034, Russia,
E-mail: t.andreeva@spbu.ru

Maria V. Nefedova

North Caucasus Federal University, Faculty of International Relations,
1, Pushkina str., Stavropol, 355017, Russia,
E-mail: mnefedova@ncfu.ru

Darya S. Vodopyanova

North Caucasus Federal University, Faculty of International Relations,
1, Pushkina str., Stavropol, 355017, Russia,
E-mail: darina_000023@rambler.ru

Abstract

The international community has been concerned about climate change and the increasing anthropogenic impact since the last century, however, effective methods to minimize the negative impact have not yet been developed. The article is devoted to the development of a methodology for geoinformation monitoring of the spatial distribution of surface temperature fields in the resort city of Pyatigorsk of the Caucasian Mineral Waters and the identification of correlations between the fields of surface temperature and urban and environmental indicators (landscaping and built-up areas). The aim of the study is to assess the influence of anthropogenic factors on the formation of microclimatic conditions of the urban environment and identify the most vulnerable areas in terms of thermal comfort of the population. Maps of the spatial dynamics of surface temperature anomalies have been obtained and patterns of changes in the temperature regimes of urban areas depending on the level of urbanization and the degree of landscaping have been identified. The results of the study are important for optimizing urban planning policy, improving the quality of life of citizens and preserving the unique natural potential of the Caucasus Mineral Waters Region. The methods of remote sensing of the Earth, cartographic analysis and statistical data processing are used. Modern remote sensing technologies simplify the analysis of indicators by providing objective data and reducing the resource intensity of ongoing research. Despite the established relatively low statistical reliability of the revealed correlations between the temperature of the earth’s surface and the levels of landscaping and built-up, the use of geoinformation monitoring methods confirms the expediency due to the availability of remote satellite images that provide a detailed study of individual fragments of urban areas and record the dynamics of spatial reorganization of green areas, their transformation into built-up areas within a given chronological period.

Keywords

temperature fields of the earth’s surface, geoinformation monitoring, spatial organization of urban ecosystems, landscaping, urban planning load, urban and ecological framework of the territory

References

  1. Baldina E.A., Konstantinov P.I., Grishchenko M.Y., Varentsov M.I. Exploring Urban Heat Islands using Infrared Remote Sensing Data. Earth from Space, 2015. No. 5. P. 38–42 (in Russian).
  2. Chandra A.M., Ghosh S.K. Remote Sensing and Geographic Information Systems. Moscow: Technosphera, 2008. 312 p. (in Russian).
  3. Cherkasov A.A., Makhmudov R.K. Atlas Information System “Population of the Stavropol Territory”. Geodesy and Cartography, 2022. V. 83. No. 12. P. 31–39 (in Russian).
  4. Dissanayake D., Morimoto T., Ranagalage M., Murayama Y. Land-Use/Land-Cover Changes and Their Impact on Surface Urban Heat Islands: Case Study of Kandy City, Sri Lanka. Climate, 2019. V. 7. Art. 99. DOI: 10.3390/cli7080099.
  5. Furberg D., Ban Y., Nascetti A. Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data. Remote sensing, 2019. V. 11. Iss. 20. Art. 2408. DOI: 10.3390/rs11202408.
  6. Kagan M.B., Pozdnyakova N.A., Andreeva T.A., Tasenko D.S., Skripchinskaya E.A., Rakova A.I. The Relationship Between Seasonal Changes in Light Pollution and the Vegetation Index on the Example of the City of St. Petersburg. InterCarto. InterGIS. GI Support of Sustainable Development of Regions in Crisis Conditions. Proceedings of the International Conference. Moscow: Lomonosov Moscow State University, Faculty of Geography, 2024. V. 30. Part 2. P. 482–497 (in Russian). DOI: 10.35595/2414-9179-2024-2-30-482-497.
  7. Knight S., Smith C., Roberts M.J. Mapping Manchester’s Urban Heat Island. Weather, 2010. V. 65. Iss. 7. P. 188–193. DOI: 10.1002/wea.542.
  8. Malik M.S., Shukla J.P., Mishra S.N. Relationship of LST, NDBI and NDVI using Landsat-8 Data in Kandaihimmat Watershed, Hoshangabad, India. Indian Journal of Geo-Marine Sciences, 2019. V. 48. Iss. 1. P. 25–31.
  9. Mason S.G., Fragkias M. Metropolitan Planning Organizations and Climate Change Action. Urban Climate, 2018. V. 25. P. 37–50. DOI: 10.1016/j.uclim.2018.04.004.
  10. Masson V., Lemonsu A., Hidalgo J., Voogt J. Urban Climates and Climate Change. Annual Review of Environment and Resources, 2020. V. 45. Iss. 1. P. 411–444. DOI: 10.1146/annurev-environ-012320-083623.
  11. Oke T.R., Mills G., Christen A., Voogt J.A. Urban Climate. Cambridge, UK: Cambridge University Press, 2017. 546 p.
  12. Olenkov V.D., Biryukov A.D., Sukhorukov V.A. Using Earth Remote Sensing Data to Build a Map of an Urban Heat Island. Fundamental, Exploratory and Applied Research of the Russian Academy of Architecture and Construction Sciences on Scientific Support for the Development of Architecture, Urban Planning and the Construction Industry of the Russian Federation in 2019. Collection of scientific papers of the Russian Academy of Architecture and Construction Sciences. Moscow: Russian Academy of Architecture and Construction Sciences, 2020. P. 286–294 (in Russian).
  13. Shovengerdt R.A. Remote Sensing. Models and Methods of Image Processing. Moscow: Technosphera, 2010. 560 p. (in Russian).
  14. Skripchinskaya E.A., Tasenko D.S., Kagan M.B., Spatial-Temporal Dynamics of Thermal Pollution of the Environment in Essentuki. Science. Innovations. Technologies, 2024. No. 2. P. 63–96 (in Russian). DOI: 10.37493/2308-4758.2024.2.3.
  15. Tasenko D.S., Skripchinskaya E.A., Vodopyanova D.S., Nefedova M.V. Landscaping, Urban Planning Load and Free Territory as Leading Indicators of the Current State of the Urban Environment in the Foothill Area of the Stavropol Territory (on the Example of Essentuki). Dagestan State Pedagogical University Journal. Natural and Exact Sciences, 2022. V. 16. No. 4. P. 100–106 (in Russian).

For citation: Tasenko D.S., Kagan M.B., Skripchinskaya E.A., Pozdnyakova N.A., Andreeva T.A., Nefedova M.V., Vodopyanova D.S. Geoinformation monitoring of spatial dynamics of surface temperature fields and urban and environmental indicators of the resort city of Pyatigorsk. InterCarto. InterGIS. Moscow: MSU, Faculty of Geography, 2025. V. 31. Part 3. P. 158–179. DOI: 10.35595/2414-9179-2025-3-31-158-179 (in Russian)